Abstract:
The present technology pertains to methods and microbial co-cultures for converting lignocellulosic biomass to biofuels and/or other carbon-based chemicals. Aspects of the present disclosure relate to novel consolidated bioprocessing (CBP) methods by which the efficiency of the production of biofuels and/or other carbon-based chemicals from cellulosic biomass-containing materials can be increased. In particular, the present disclosure provides numerous microbiological co-cultures for increasing the efficiency of ethanol and/or lactic acid production from biomass.
Abstract:
A method and apparatus for preparing a cellulosic feedstock are disclosed. Embodiments of the method comprise passing the cellulosic feedstock out of at least one outlet of a vessel (such as a holding tank) and obtaining at least two streams of cellulosic feedstock wherein each stream may be fed different hydrolysis reactors. Embodiments of the apparatus comprise passing the cellulosic feedstock downwardly through the vessel and withdrawing the feedstock from the vessel in two different lateral directions.
Abstract:
Disclosed is a method of saccharifying biomass, such as algae or agricultural by-products by performing a high-pressure extrusion pulverization process for the biomass, such as algae or agricultural by-products, and more particularly to a method of saccharifying biomass, which includes homogenizing and crushing algae or agricultural by-products, and extruding the algae or agricultural by-products through a micro-diameter tube to pulverize the algae or agricultural by-products. Non-biodegradable polymers, such as cellulose, which is a polysaccharide included in biomass, such as algae or agricultural by-products, hemicelluloses, starch, and complex polysaccharide, are hydrolyzed at high glycosylation efficiency through an eco-friendly pretreatment process using water.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
A dry grind ethanol production process and system with front end milling method is provided for improving alcohol and/or by-product yields, such as oil and/or protein yields. In one example, the process includes grinding corn kernels into particles then mixing the corn particles with a liquid to produce a slurry including oil, protein, starch, fiber, germ, and grit. Thereafter, the slurry is subjected to a front end milling method, which includes separating the slurry into a solids portion, including fiber, grit, and germ, and a liquid portion, including oil, protein, and starch, then milling the separated solids portion to reduce the size of the germ and grit and release bound starch, oil, and protein from the solids portion. The starch is converted to sugar, and alcohol is produced therefrom then recovered. Also, the fiber can be separated and recovered. Oil and protein may be separated and recovered as well.
Abstract:
The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.
Abstract:
The present invention relates to methods for degrading or converting a cellulose-containing material, comprising: treating the cellulose-containing material with an effective amount of a cellulolytic enzyme composition comprising a polypeptide having cellulolytic enhancing activity, and one or more (several) components selected from the group consisting of a CEL7 polypeptide having endoglucanase activity, a CEL12 polypeptide having endoglucanase activity, a CEL45 polypeptide having endoglucanase activity, a CEL7 polypeptide having cellobiohydrolase activity with a cellulose binding domain, and a CEL7 polypeptide having cellobiohydrolase activity without a cellulose binding domain. The present invention also relates to such cellulolytic enzyme compositions.
Abstract:
This disclosure relates to a method for treating a biomass comprising a lignocellulosic material to produce fermentable sugars comprising the steps of treating the biomass to produce a biomass with a depolymerized lignin, adding a carbonyl scavenger to the biomass before, during, or after said treating step to inhibit repolymerization of the lignin, adding at least one of a laccase enzyme and a cellulases enzyme to the biomass with depolymerized lignin subsequently to the addition of the carbonyl scavenger, and producing a fermentable sugar from the action of the laccase enzyme and cellulases enzyme on the biomass with depolymerized lignin.
Abstract:
Biomass (e.g., plant biomass, animal biomass, microbial, and municipal waste biomass) is processed to produce useful products, such as food products and amino acids.
Abstract:
A biomass hydrothermal decomposition apparatus includes, a biomass feeder (31) that feeds biomass material (11) under normal pressure to under increased pressure, a hydrothermal decomposition device (42A) that allows the fed biomass material (11) to be gradually moved inside a device main body (42A) from either end thereof in a consolidated condition, and also allows hot compressed water (15) to be fed from an other end of a feed section for the biomass material into the main body (42A), so as to cause the biomass material (11) and the hot compressed water (15) to countercurrently contact with each other and undergo hydrothermal decomposition, and that elutes a lignin component and a hemicellulose component into the hot compressed water, so as to separate the lignin component and the hemicellulose component from the biomass material (11); and a biomass discharger (51) that discharges, from the side where the hot compressed water is fed into the device main body, a biomass solid residue (17) under increased pressure to under normal pressure.