Abstract:
An accessory for use with a microscope arranged to carry out ATR measurements has a support (40) which can be fixed to the moveable stage (20) of the microscope. A mounting member (100) is carried by the support (40). A sample supporting member (60) is disposed below the location of the ATR crystal (106). The sample supporting member (60) is carried on the support (40) such that it can be moved to restricted extent relative to the support and defines a sub-stage which can be moved relative to the main stage (20) of the microscope.
Abstract:
A goniophotometer includes two independent towers: a main support tower and an upright mirror tower. A swing arm is connected to the main support tower and can be rotated around a main horizontal axis. An elliptic flat rotation mirror, a first detector and a second detector are fixed to the swing arm. A test light source that is also connected to the main support tower can be rotated around a vertical axis. An upright round mirror is connected to the upright mirror tower. A far-field measurement can be achieved when a light beam from the test light source travels into the rotation mirror then is reflected to the upright mirror, and then is reflected by the upright mirror to the first detector. A near field measurement is achieved when the second detector receives a test light beam directly form the test light source.
Abstract:
An accessory for use with a microscope arranged to carry out ATR measurements has a support (40) which can be mounted on the moveable stage of the microscope. A mounting (100) for an ATR crystal (106) is carried on the support. A sample supporting member (60) is disposed below the location of the ATR crystal. The sample supporting member (60) has a relatively thin upper wall (64). A pressure applying mechanism (80) is located below the wall (64) and is operable to apply pressure to a sample through the wall (64) to ensure good contact between a sample and the sample contacting surface of the crystal.
Abstract:
An information processing apparatus includes a unit configured to acquire spectral data of ambient light to be estimated, a unit configured to receive spectral data and ambient light type information of a plurality of reference ambient light conditions, a comparison unit configured to compare the spectral data of the ambient light to be estimated with the spectral data of the plurality of reference ambient light conditions, and an estimation unit configured to estimate an ambient light type of the spectral data of the ambient light to be estimated from the ambient light type information of the reference ambient light based on a result of comparison provided by the comparison unit.
Abstract:
A device for analyzing the color of a nonhomogeneous material, utilizable for example for analysing the hair color of an individual includes at least one of an illumination source for illuminating the above sample of a nonhomogeneous material, a display structure for exposing the sample of a nonhomogeneous material to the radiation emitted from the illumination source, detection means for the digital acquisition of the image of the sample illuminated from the illumination source, and processing means for transforming the digital acquisition readings of the image of said detection means in coordinates comparable with the perception of the human eye.
Abstract:
An alogrithmic method is identified for compensating for thermochromaticity errors in insitu spectral color measurements of a color printing device. A difference is mapped between spectral measurements of a printed color generated by the color printing device measured at a first or hot temperature and at a second or cool ambient temperature where the mapping comprises a referenceable characteristic of the color printing device. The spectrophotometric measurement of a hot color is compared with colors obtained with thermochromaticity compensation matrix to assess if the measured color corresponds to the desired color which will result when cooled to ambient temperature.
Abstract:
An example method uses a spectrophotometer to collect reflectance curve data from a physical sample colored to a desired color. The reflectance curve data is employed to produce computer display outputs of substrates as they would be appear if colored with the desired color. The method includes using a colorimeter to collect calorimetric data from the outputs on the display. The sets of colorimetric data are compared and data that facilitate manipulating the reflectance curve data associated with the desired color is produced. The synthetic reflectance curve data facilitates producing matches for the various substrates as colored and displayed on the computer display. The synthetic reflectance curve data may also be used to manipulate colorant formulae.
Abstract:
In a method for automatically detecting degenerated regions in many stained thin section specimens (40), color region information is obtained on a degenerated region and on a non-degenerated region on image data of a standard specimen in a stained thin section slide. Next, color region information is obtained on a non-degenerated region on image data of a specimen. Next, the image data of the specimen is compared with the image data of the standard specimen to calculate a color correction quantity to match tone and brightness of the non-degenerated region in the specimen with the counterparts in the non-degenerated region in the standard specimen, and the image data of the specimen is corrected with the color correction quantity. Next, a degenerated region is extracted in the corrected image data of the specimen based on the color region information in the standard specimen.
Abstract:
A method and system to monitor randomly oriented objects on a process line are disclosed. A color camera is used initially to collect a set of reference images of at least one reference object. The reference images represent various spatial orientations of the reference object. The reference object serves as the standard for the process. The reference images are stored in a computer-based platform. The color camera is then used to capture images of monitored objects as the monitored objects pass by the color camera on a process line. The monitored objects may have a random spatial orientation with respect to the color camera as the monitored objects pass through the field-of-view of the color camera. The captured images of the monitored objects are processed by the computer-based platform and compared to the reference images in order to determine if certain characteristic parameters of the monitored objects have deviated from those same characteristic parameters of the reference object. If so, the process may be adjusted to correct for the deviations in order to bring the process back into tolerance.
Abstract:
A method of evaluating halo artifacts is described herein. The method utilizes a pattern of color patches, a color space and color difference metrics to analyze color changes which correlate to the amount of halo. The pattern of color patches is utilized in the CIE L*a*b* color space to determine an area of patch unaffected by halo of the pattern of color patches. After the area of patch unaffected by halo is determined, a Reference Value is computed by averaging the CIE L*a*b* color for the area of patch unaffected by halo. Then an Artifact Value is calculated either by averaging the CIE L*a*b* color for the area outside the area of patch unaffected by halo but before the margin or by averaging the CIE L*a*b* color on the edge of the patch. Once these values are determined, the halo quantity is calculated.
Abstract translation:本文描述了评估晕轮假象的方法。 该方法利用颜色图案,色彩空间和色差度量来分析与光环数量相关的颜色变化。 彩色图案在CIE L * a * b *颜色空间中被使用,以确定不受色块图案的光晕影响的贴片区域。 在不受光晕影响的贴片区域之后,通过对不受光环影响的贴片区域的CIE L * a * b *颜色进行平均来计算参考值。 然后通过平均CIE L * a * b *颜色来计算人造物价值,该CIE L * a * b *颜色用于不受光环影响但在边缘之前但通过平均CIE L * a * b *颜色的区域之外的区域 补丁。 一旦确定了这些值,就计算光晕量。