Abstract:
The present invention creates a spectrometer (1; 1′) for measuring the concentration of at least one analyte in a fluid sample (2; 2′), with a light source (3; 3′) to generate a light beam (4; 4′), with a photosensor (5; 5′) to receive the light beam (4; 4′), and with a measurement length (6; 6′), in which the fluid sample (2; 2′) can be placed, in the beam path of the light beam (4; 4′), the measurement length (6; 6′) being provided in changeable form.
Abstract:
A method of determining a physical property of a composite material includes providing a series of composite materials/surfacing films, which are subjected to increasing thermal experience to create a set of thermal effect standards, collecting mid-IR spectra on those standards, performing data pre-processing and then multivariate calibration on the spectra of the composite materials/surfacing films, and using that calibration to predict the thermal effect for samples in question.
Abstract:
A portable biosensor system includes at least one capillary tube extending longitudinally along a major axis between a proximal inlet end and a distal end. The at least one capillary tube has an interior surface coated with a capture material and forms a waveguide. At least one collimated light emitting diode is disposed proximate and perpendicular to the major axis of the at least one capillary tube and is positioned relative to the at least one capillary tube so that energy enters the at least one capillary tube from its exterior along the entire length of the at least one capillary tube to project a line of energy along substantially the entire longitudinal extent of the at least one capillary tube. A photosensor is disposed proximate the distal end of the at least one capillary tube for receiving emissive radiation therefrom. The photosensor generates an output voltage (or, optical output) representative of the emissive radiation, and a means for measuring the output voltage is provided. Also disclosed is a method of detecting target molecules in a sample using the biosensor of the present invention.
Abstract:
Various improvements to three dimensional imaging systems having inflatable membranes are disclosed. These improvements include, among other things, a proximity sensor that can be used to warn a user of the device when approaching a feature in a cavity, such as an eardrum in an ear canal; or optical sensors with an optical coating matching the refractive index of the medium in which the optical sensors are deployed, to improve data acquisition.
Abstract:
A method of determining contamination on a material having suspected contamination includes irradiating the material having suspected contamination with infrared energy over a spectrum of wavelengths; detecting the infrared energy reflected from the material having suspected contamination over the spectrum of wavelengths; performing multivariate analysis on the spectrum of the reflected infrared energy; comparing results of the multivariate analysis with a predetermined calibration of infrared energy spectra comprising the spectrum of wavelengths collected from at least one reference material; and determining presence or absence of contamination on the material having suspected contamination based on the predetermined calibration.
Abstract:
Methods for detecting exposure to ionizing radiation are provided. In particular, methods for detecting and measuring the exposure of keratin-rich materials to ionizing radiation using optically stimulated luminescence are provided.
Abstract:
The hand-held inspection tool enhances the ability of an on-site inspector to detect and communicate the presence of contamination on an object or in an area. An on-site inspector directs an excitation light in the sensing head of the tool into an area of interest. If the targeted contamination is present, the excitation light causes the contamination to emit fluorescence. The emitted fluorescent light passes through a narrow spectral band-pass video camera filter and is detected by a video camera mounted in the tool sensing head. The video camera transmits the image to a display visible to the on-site inspector. The invention also includes a means of recording, documenting, and wirelessly communicating the inspection process so that remotely located personnel can view the inspection, and respond to the inspection findings in real time.
Abstract:
A field use optical grain characterising system (101) includes a generally rectangular prismatic composite body (102) that defines a component cavity (103). A substantially vertical elongate channel (104) extends within cavity (103) for housing a grain sample (not shown). An electromagnetic radiation source, in the form of a 12 Volt halogen lamp (105), is disposed within cavity (103.) for directing NIR light into channel (104). An optical detection system (107) is disposed within cavity (103) for sensing selected light emerging from channel (104) and for providing a sensor signal. A processor, which is included within detection system (107), is also disposed within cavity (103) and is responsive to the sensor signal for providing data indicative of a characteristic parameter of the grain sample. A display device, in the form of a 5.7-inch touch screen LCD display (108), is connected with body (102) for selectively presenting the data.
Abstract:
There is provided a portable measuring system having a biophotonic sensor. The portable measuring system also includes a tunable light source, an output intensity detector and an output wavelength detector, which are mounted therein. The portable measuring system can precisely measure a variation in the reflectivity spectrum and/or the transmittance spectrum of the biophotonic sensor before and after an antigen-antibody reaction by varying the wavelength of the tunable light source. Thus, the concentration of the antigen is precisely measured.