Abstract:
A system, processor and method to increase computational reliability by using underutilized portions of a data path with a SuperFMA ALU. The method allows the reuse of underutilized hardware to implement spatial redundancy by using detection during the dispatch stage to determine if the operation may be executed by redundant hardware in the ALU. During execution, if determination is made that the correct conditions exists as determined by the redundant execution modes, the SuperFMA ALU performs the operation with redundant execution and compares the results for a match in order to generate a computational result. The method to increase computational reliability by using redundant execution is advantageous because the hardware cost of adding support for redundant execution is low and the complexity of implementation of the disclosed method is minimal due to the reuse of existing hardware.
Abstract:
Avoiding encryption in a deduplication vault. In one example embodiment, a method may include analyzing an allocated plain text block stored in the source storage to determine if the block is already stored in the deduplication storage, in response to the block not being stored, encrypting the allocated plain text block and analyzing the encrypted block to determine if the encrypted block is already stored in the deduplication storage, analyzing a second allocated plain text block stored in the source storage to determine if the block is already stored in the deduplication storage, in response to the block already being stored, avoiding encryption of the second allocated plain text block by not encrypting the second allocated plain text block and instead associating the location of the second allocated plain text block in the source storage with the location of the duplicate block already stored.
Abstract:
Avoiding encryption of certain blocks in a deduplication vault. In one example embodiment, a method of avoiding encryption of certain blocks during a backup of a source storage into a deduplication vault storage may include analyzing each allocated plain text block stored in a source storage at a point in time to determine if the allocated plain text block is already stored in the deduplication vault storage. If the allocated plain text block is not stored in the deduplication vault storage, the block may be encrypted and the encrypted block may be analyzed to determine if the encrypted block is already stored in the deduplication vault storage. If neither the allocated plain text block nor the encrypted block is already stored in the deduplication vault storage, the encrypted block may be stored in the deduplication vault storage.
Abstract:
System and method for transferring data between a host system and a data storage system is provided. The system includes an interface that uses a file based protocol to transfer data between the data storage system and the host system, wherein the data storage system includes a first mass storage device and a second mass storage device; wherein the first mass storage device is a solid state non-volatile memory device and the second mass storage device is a non-solid state memory device. The first mass storage device is a flash memory device that operates as a primary storage device that stores data on a file by file basis. The second mass storage device is a magnetic disk drive that operates as secondary storage device and stores data received via a logical interface.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes in the single chassis is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. A plurality of compute nodes is included in the single chassis, each of the plurality of compute nodes is configured to communicate with the plurality of storage nodes. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
Embodiments of the invention relate to faulty recovery mechanisms for a three-dimensional (3-D) network on a processor array. One embodiment comprises a multidimensional switch network for a processor array. The switch network comprises multiple switches for routing packets between multiple core circuits of the processor array. The switches are organized into multiple planes. The switch network further comprises a redundant plane including multiple redundant switches. Multiple data paths interconnect the switches. The redundant plane is used to facilitate full operation of the processor array in the event of one or more component failures.
Abstract:
System and method for transferring data between a host system and a data storage system is provided. The system includes an interface that uses a file based protocol to transfer data between the data storage system and the host system, wherein the data storage system includes a first mass storage device and a second mass storage device; wherein the first mass storage device is a solid state non-volatile memory device and the second mass storage device is a non-solid state memory device. The first mass storage device is a flash memory device that operates as a primary storage device that stores data on a file by file basis. The second mass storage device is a magnetic disk drive that operates as secondary storage device and stores data received via a logical interface.
Abstract:
A method includes, in a memory controller that controls a memory, evaluating an available memory space remaining in the memory to write data. A redundant storage configuration is selected in the memory controller depending on the available memory space. Redundancy information is calculated over the data using the selected redundant storage configuration. The data and the redundancy information are written to the available memory space in the memory.
Abstract:
Avoiding encryption of certain blocks in a deduplication vault. In one example embodiment, a method of avoiding encryption of certain blocks during a backup of a source storage into a deduplication vault storage may include analyzing each allocated plain text block stored in a source storage at a point in time to determine if the allocated plain text block is already stored in the deduplication vault storage. If the allocated plain text block is not stored in the deduplication vault storage, the block may be encrypted and the encrypted block may be analyzed to determine if the encrypted block is already stored in the deduplication vault storage. If neither the allocated plain text block nor the encrypted block is already stored in the deduplication vault storage, the encrypted block may be stored in the deduplication vault storage.
Abstract:
A method includes, in a memory controller that controls a memory, evaluating an available memory space remaining in the memory to write data. A redundant storage configuration is selected in the memory controller depending on the available memory space. Redundancy information is calculated over the data using the selected redundant storage configuration. The data and the redundancy information are written to the available memory space in the memory.