Abstract:
Disclosed is a circuit element that includes a thermoplastic substrate and a conductive trace at least partially embedded in the thermoplastic substrate. Also disclosed is a method of forming a circuit element. The method includes the steps of providing a thermoplastic substrate having a softening temperature, printing a conductive ink onto the thermoplastic substrate to form a trace, and embedding the trace into the thermoplastic substrate by heating the thermoplastic substrate to a temperature above about the softening temperature about the trace.
Abstract:
A metalized circuit suitable for application as a radio frequency antenna is produced by forming an antenna coil pattern on a flexible substrate. The antenna coil pattern is formed using a conductive ink which is patterned on the substrate. The conductive ink is cured and an electrical-short layer is formed across the coils of the conductive ink pattern. An insulating layer is formed over top of the electrical-short layer, a metal layer electroplated on top of the conductive layer, and then the electrical-short layer is removed. The use of the electrical-short layer during the electroplating allows for the voltage at the different points on the conductive ink layer to be relatively similar, so that a uniform electroplate layer is formed on top of the conductive ink layer. This results in a better quality radio frequency antenna at a reduced cost.
Abstract:
A component (16) mounted on the board (20) is cooled by a cooling surface (15) in contact with a heat sink element in the form of a metal stud (8) which, in turn, may be connected to an outer cooling surface. One method of achieving this is to form holes (4) in a laminate (1), etching patterns (5), placing a metal stud (8) in the hole (4), applying a dielectric (9) to the upper and lower side of the laminate (1), forming openings (14) in the dielectric (9), and thereafter metal plating the entire circuit board and etching further patterns. Component 16 can then be mounted on the printed circuit board (20). A heat sink element (8) includes a cutting edge (18) and can be used beneficially in conjunction with one embodiment of the method.
Abstract:
An electrical component includes an initial structure (40) molded of an insulative first material and having a plurality of regions (81, 82, 83) that each forms a passage (42), with the regions being largely separated to leave gaps (90, 92, 94) between them, but with the regions joined by small tabs (44). The initial structure is plated everywhere, including along the passages and on the tabs. A quantity of second insulative material (108) is overmolded to the plated initial structure to fill the gaps between them but not some portions of the passages. The tabs then can be cut away to electrically isolate the platings on the different regions, and to thereby electrically isolated contacts, such as the outer conductors of coaxial connectors, installed in the passages while the regions that form the passages are mechanically held together by the overmolding second material.
Abstract:
A structure of and method for producing a multilayer printed or wiring circuit board, and more particularly a method producing so-called z-axis or multilayer electrical interconnections in a hierarchial wiring structure in order to be able to provide for an increase in the number of inputs and outputs (I/O) in comparison with a standard printed wiring board (PWB) arrangement, and a printed wiring board produced by the method.
Abstract:
An improved wear resistant bump contact is produced by the inclusion of small particles of hard materials in the conductive material of the contact bump, preferably by co-deposition at the time of electroplating of the bump bulk material. Desirable attributes of the small particles of hard material include small particle size, hardness greater than the hardness of the bulk material of the contact bump, compatibility with the plating conditions, and electrical conductivity. Nitride, borides, silicides, carbides are typical interstitial compounds suitable for use in satisfying these desirable attributes. In one preferred example, a nickel bulk material and silicon carbide particles are utilized. In one variation, the bump of metal-particle co-deposited material is coated by a thin cap layer of noble, non-oxidizing metal to prevent electrical erosion by arcing as contact is made and broken from the pad. Rhodium and ruthenium are suitable metals and can be electrodeposition over the composite bump structure.
Abstract:
A method of producing a multilayer circuit board comprising a core substrate and a plurality of layers of wiring lines on both sides of the core substrate with an insulation layer being interposed therebetween; the layers of wiring lines on both sides being interconnected by conducting members provided on the inside walls of through holes going through the core substrate, and the interposed insulation layer. The method further comprising, wiring lines with an upper layer of wiring lines wherein the conducting member on the inside wall of the through hole and the via are formed in separate steps. The method can provide a multilayer circuit board which can advantageously be used to mount a chip or device thereon having an increased number of electrodes or terminals.
Abstract:
An insulator substrate or printed circuit board (PCB) having a filled and plated via is provided. The plated via is filled with an electrically conductive fill composition. A conductive cap layer is formed on both ends of the conductive fill composition in the via and the major surfaces of the insulator substrate and can be bonded to a surface mount contact as a land or a pad.
Abstract:
A process for forming a resistor whose dimensions can be accurately determined by a photoimaging process, thereby yielding a resistor whose size and resistance value render the resistor a viable alternative to discrete chip resistors. The resistor is formed of a photoimageable resistive thick-film material that enables the dimensions of a resistor to be determined directly by photodefinition instead of conventional screen printing. Electrically-conductive terminations are provided that determine the electrical length of the resistor. The terminations may be formed prior to depositing the resistive layer, or after the resistive layer has been photoimaged and developed. If the latter approach is used, the terminations may be formed by depositing a photoimageable layer on the resistor, photoimaging and developing the photoimageable layer so as to form openings that expose regions of the resistor, and then plating, e.g., electrolessly plating, a conductive material on the exposed regions of the resistor to form terminations that overlie the resistor. Alternatively, by formulating the photoimageable layer to be plateable, a second photoimageable layer can be deposited on the plateable photoimageable layer prior to plating the conductive material, and then photoimaged and developed to form openings that expose regions of the plateable photoimageable layer that are adjacent the regions of the resistor exposed by the openings in the plateable photoimageable layer. Thereafter, the conductive material can be plated on the regions of the resistor and the plateable photoimageable layer exposed by the openings to yield terminations and connectors to the resistor.
Abstract:
In a film carrier with a conductive circuit formed, an opening is formed in a particular position relative to where the conductive path is to be formed. The opening is a through-hole, filled with a conductive material to form a conductive path. The conductive circuit has a concave face, provided according to certain formulae. The film carrier can cope with a fine-pitched and highly dense mounting, while prohibiting pulling out of the conductive path by an external force. The film carrier does not suffer from fallout of the conductive path, and has increased electrical connection reliability.