Abstract:
Certain aspects pertain to Fourier ptychographic tomographic systems and methods for acquiring a plurality of uniquely illuminated intensity measurements based on light passing through a thick sample from plane wave illumination at different angles and for constructing three-dimensional tomographic data of the thick sample by iteratively determining three-dimensional tomographic data in the Fourier domain that is self-consistent with the uniquely illuminated intensity measurements.
Abstract:
There is provided a terahertz wave measuring device including (1) a terahertz wave generation element that generates a terahertz wave by difference frequency generation based on excitation light that is incident to the terahertz wave generation element, the excitation light including a plurality of different wavelength components and being condensed so as to have a beam diameter of a predetermined size, (2) a structural body through which the terahertz wave is transmitted; and (3) a detector that detects an intensity of the terahertz wave that has been transmitted through the structural body, wherein the structural body includes a sample holder of a predetermined width that holds a sample, and the structural body is in close contact with or is joined to the terahertz wave generation element.
Abstract:
An embodiment of the invention relates to an optical sensor for detecting chemical, biochemical or biological substances, the sensor comprising a laser and a semiconductor chip, wherein at least one photodetector and at least one high-contrast grating are monolithically integrated in said same chip, wherein the high-contrast grating is configured to optically couple radiation emitted by the laser into the photodetector, and wherein the coupling behaviour of said high-contrast grating depends on the optical properties of external substances that are brought near to or in contact with the high-contrast grating.
Abstract:
The invention provides a method for measuring light scattered on a sample in a medium, in particular a fluid medium, that comprises the following steps: providing a rotatably arranged measuring cell with a substantially circular cross-section in a plane perpendicular to the axis of rotation for receiving the medium and the sample, rotating the measuring cell, preferably at least once by substantially 360°, about the axis of rotation, in particular by means of a drive, emitting a laser beam by means of a laser onto the sample located within the measuring cell in the plane perpendicular to the axis of rotation at different angles of rotation of the measuring cell, the measuring cell maintaining its position in the direction of the axis of rotation, detecting scattered light signals by means of at least two detectors arranged in a circle and concentrically to the center of rotation of the measuring cell and fixed within set, different angular ranges at different angles of rotation of the measuring cell, and determining a corrected signal value for each detector on the basis of the scattered light signals detected at different angles of rotation of the measuring cell for each detector. Furthermore, the invention provides an apparatus for measuring light scattered on a sample according to the method comprising a laser, a measuring cell and a detector.
Abstract:
A scanning module including first path shifting unit changing a path of an incident electromagnetic wave from a light source; a first driving unit adjusting the path of the electromagnetic wave by moving the first path shifting unit; and a Bessel beam generating unit making a Bessel beam on a portion of an object, using the electromagnetic wave with the path changed by the path shifting unit. A detection probe which includes a light source generating an electromagnetic wave; a path shifting unit changing a path of an electromagnetic wave from a light source; a Bessel beam generating unit making a Bessel beam on a portion of an object, using the electromagnetic wave with the path changed by the path shifting unit; a detecting unit detecting intensity of a wave from the object, and a housing accommodating the light source, path shifting unit, Bessel beam generating unit, and detecting unit.
Abstract:
A compact solar simulator includes a target surface for a solar module, an enclosure behind the target surface, and at least one source fixture including a lamp in the enclosure spaced from the target surface. Diffusing surfaces about the source fixture diffuse radiation emitted by the lamp. Specular reflectors are positioned to steer the diffused radiation to the target surface and are oriented to create a uniform intensity distribution across the target surface. Moreover, the surface area of any desired filters is reduced and any longitudinal non-uniform intensity distribution of the lamp is corrected.
Abstract:
In an illumination system (12, 13) for a scatterometer, first and second spatial light modulators lie in a common plane and are formed by different portions of a single liquid crystal cell (260). Pre-polarizers (250) apply polarization to first and second radiation prior to the spatial light modulators. A first spatial light modulator (236-S) varies a polarization state of the first radiation in accordance with a first programmable pattern. Second spatial light modulator (236-P) varies a polarization state of the second radiation accordance with a second programmable pattern. A polarizing beam splitter (234) selectively transmits each of the spatially modulated first and second radiation to a common output path, depending on the polarization state of the radiation. In an embodiment, functions of pre-polarizers are performed by the polarizing beam splitter.
Abstract:
An identifiable mark on a portion of a polished facet of a surface of an article and being identifiable by an optical magnifying viewing device, said identifiable mark comprising a nano-structure formed by a two-dimensional or a three-dimensional lattice of a plurality of discrete nanometer sized recessed or protruded entities, wherein said entities are arranged within a predefined region of said polished facet in a predetermined arrangement in relation to each other and such that an outer interface surface between the facet of the article and air is formed and an inner interface surface between the facet of the article and air is formed. Said predetermined arrangement of said entities is non-uniform and non-periodic arrangement, and wherein said entities are sized and shaped so as to cause optical scattering upon reflection of incident light and the distance from the inner interface surface to the outer interface surface is greater than the amplitude of the non-marked portion of said polished face. Upon reflection of incident light having one or more predetermined wavelengths by said lattice at a predetermined angle of incidence to said lattice, interference due to scattering of light from said lattice is induced such that said reflected light has a variation in intensity providing one or more local maxima of one or more wavelengths. Said mark is identifiable by way of an optical magnifying viewing device inclined at a requisite viewing angle such that a local maxima is detected.
Abstract:
The invention provides a method for measuring light scattered on a sample in a medium, in particular a fluid medium, that comprises the following steps: providing a rotatably arranged measuring cell with a substantially circular cross-section in a plane perpendicular to the axis of rotation for receiving the medium and the sample, rotating the measuring cell, preferably at least once by substantially 360°, about the axis of rotation, in particular by means of a drive, emitting a laser beam by means of a laser onto the sample located within the measuring cell in the plane perpendicular to the axis of rotation at different angles of rotation of the measuring cell, the measuring cell maintaining its position in the direction of the axis of rotation, detecting scattered light signals by means of at least two detectors arranged in a circle and concentrically to the centre of rotation of the measuring cell and fixed within set, different angular ranges at different angles of rotation of the measuring cell, and determining a corrected signal value for each detector on the basis of the scattered light signals detected at different angles of rotation of the measuring cell for each detector. Furthermore, the invention provides an apparatus for measuring light scattered on a sample according to the method comprising a laser, a measuring cell and a detector.
Abstract:
The invention relates to a laser assembly (100) having a laser (L) for generating primary laser pulses (1), beam splitting optics (15) for splitting a primary laser pulse into a plurality of temporally staggered sub-pulses, and having focusing optics (17-19) for focusing the sub-pulses in or on an object (20) so that every sub-pulse is focused in a separate focus volume (F). The invention is characterized in that the mutual spatial and/or temporal relationship of the focus volumes (F) of the sub-pulses originating from a common primary laser pulse is variably adjustable. The invention also relates to a corresponding method.