Abstract:
A system for controlling a fleet of unmanned vehicles includes a plurality of unmanned vehicles connected to a computing device. The computing device stores a dynamic attribute and a static attribute respective to each of the plurality of unmanned vehicles. The computing device is configured to: receive a task request including (i) an item identifier of an item, (ii) an action type defining an action to be performed respective to the item, and (iii) a location identifier of a location at which to perform the action; responsive to receiving the request, retrieve the stored dynamic attributes and static attributes; based on a comparison of the task request with the dynamic attributes and the static attributes, select one of the plurality of unmanned vehicles; and transmit, via the network, a command to the selected unmanned vehicle to perform the action respective to the item at the location.
Abstract:
A system for controlling a fleet of unmanned vehicles includes a plurality of unmanned vehicles connected to a computing device. The computing device stores a dynamic attribute and a static attribute respective to each of the plurality of unmanned vehicles. The computing device is configured to: receive a task request including (i) an item identifier of an item, (ii) an action type defining an action to be performed respective to the item, and (iii) a location identifier of a location at which to perform the action; responsive to receiving the request, retrieve the stored dynamic attributes and static attributes; based on a comparison of the task request with the dynamic attributes and the static attributes, select one of the plurality of unmanned vehicles; and transmit, via the network, a command to the selected unmanned vehicle to perform the action respective to the item at the location.
Abstract:
Systems, methods and apparatus are provided for controlling self-driving vehicles. The system comprises: a processor, a memory storing operational constraints for a self-driving vehicle, and a communications interface. A plurality of path portions are assembled at the system to define an area in a physical space in which the self-driving vehicle is to navigate, each of the plurality of path portions associated with a respective given subset of operational constraints stored in the memory. The system provides, to the self-driving vehicle, respective given subsets of the operational constraints of the plurality of path portions that define the area, and associated positions of each of the plurality of path portions in the physical space.
Abstract:
Systems and methods for autonomous lineside delivery to an assembly-line using a self-driving vehicle are disclosed, comprising receiving a part-supply schedule having a part identifier identifying a part to be supplied, an assembly-line location to be supplied with the part, and a delivery time for supplying the part to the assembly-line location. A mission is generated based on the schedule, and sent to a self-driving vehicle. The self-driving vehicle executes the mission such that the part is supplied to the assembly-line location in accordance with the part-supply schedule.
Abstract:
There is provided a driver-support system for use with a human-operated material-transport vehicle, and methods for using the same. The system has at least one sensor, a human-vehicle interface, and a transceiver for communicating with a fleet-management system. The system also has a processor that is configured to provide a mapping application and a localization application based on information received from the sensor. The mapping application and localization application may be provided in a single localization-and-mapping (“SLAM”) application, which may obtain input from the sensor, for example, when the sensor is an optical sensor such as a LiDAR or video camera.
Abstract:
Systems and methods for autonomous lineside delivery to an assembly-line using a self-driving vehicle are disclosed, comprising receiving a part-supply schedule having a part identifier identifying a part to be supplied, an assembly-line location to be supplied with the part, and a delivery time for supplying the part to the assembly-line location. A mission is generated based on the schedule, and sent to a self-driving vehicle. The self-driving vehicle executes the mission such that the part is supplied to the assembly-line location in accordance with the part-supply schedule.
Abstract:
The various embodiments described herein generally relate to systems and methods for operating one or more self-driving vehicles. In some embodiments, the self-driving vehicles may include a vehicle processor being operable to: control the vehicle to navigate an operating environment in an initial vehicle navigation mode; monitor for one or more trigger conditions indicating a possible change for the vehicle navigation mode; detect a trigger condition; determine a prospective vehicle navigation mode associated with the detected trigger condition; determine whether to change from the initial vehicle navigation mode to the prospective vehicle navigation mode; and in response to determining to change from the initial vehicle navigation mode to the prospective vehicle navigation mode, adjust one or more vehicle attributes corresponding to the prospective vehicle navigation mode, otherwise continue to operate the vehicle in the initial vehicle navigation mode.
Abstract:
A system, method and apparatus for executing tasks with unmanned vehicles is provided. The system includes an unmanned vehicle comprising: a chassis; a propulsion system configured to move the chassis; sensor(s) configured to sense features around the chassis; a memory storing feature reference data; a communication interface; and a processor configured to: receive, using the interface, a command having task data and a location associated with a given feature; control the propulsion system to move the chassis to the location; while the chassis is moving to the location, determine, using the sensor(s), that the given feature is detected based on the feature reference data; and, responsive to the given feature being detected, control the propulsion system to execute a task based on the task data.
Abstract:
Systems and methods for process tending with a robot arm are presented. The system comprises a robot arm and robot arm control system mounted on a self-driving vehicle, and a server in communication with the vehicle and/or robot arm control system. The vehicle has a vehicle control system for storing a map and receiving a waypoint based on a process location provided by the server. The robot arm control system stores at programs that is executable by the robot arm. The vehicle control system autonomously navigates the vehicle to the waypoint based on the map, and the robot arm control system selects a target program from the stored programs based on the process location and/or a process identifier.
Abstract:
The various embodiments described herein generally relate to an autonomous material transport vehicle, and systems and methods for operating an autonomous material transport vehicle. The autonomous material transport vehicle comprises: a sensing system operable to monitor an environment of the vehicle; a drive system for operating the vehicle; a processor operable to: receive a location of a load; initiate the drive system to navigate the vehicle to the location; following initiation of the drive system, operate the sensing system to monitor for one or more objects within a detection range; and in response to the sensing system detecting the one or more objects within the detection range, determine whether the load is within the detection range; and when the load is within the detection range, operate the drive system to position the vehicle for transporting the load, otherwise, determine a collision avoidance operation to avoid the one or more objects.