-
公开(公告)号:US12172319B2
公开(公告)日:2024-12-24
申请号:US18534005
申请日:2023-12-08
Applicant: Clearpath Robotics Inc.
Inventor: Daniel Cantor , Ryan Christopher Gariepy , Roydyn Clayton , Yvan Geoffrey Rodrigues , Anthony William Tod , Bryce William Vondervoort
Abstract: Systems and methods for process tending with a robot arm are presented. The system comprises a robot arm and robot arm control system mounted on a self-driving vehicle, and a server in communication with the vehicle and/or robot arm control system. The vehicle has a vehicle control system for storing a map and receiving a waypoint based on a process location provided by the server. The robot arm control system stores at programs that is executable by the robot arm. The vehicle control system autonomously navigates the vehicle to the waypoint based on the map, and the robot arm control system selects a target program from the stored programs based on the process location and/or a process identifier.
-
2.
公开(公告)号:US20240054434A1
公开(公告)日:2024-02-15
申请号:US18455243
申请日:2023-08-24
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher GARIEPY , Simon Drexler , Roydyn Clayton , Sam Adrian Jenkins , Pavel Bovbel , Yvan Geoffrey Rodrigues
IPC: G06Q10/083 , G06Q10/0631
CPC classification number: G06Q10/083 , G06Q10/06313
Abstract: Systems and methods for autonomous lineside delivery to an assembly-line using a self-driving vehicle are disclosed, comprising receiving a part-supply schedule having a part identifier identifying a part to be supplied, an assembly-line location to be supplied with the part, and a delivery time for supplying the part to the assembly-line location. A mission is generated based on the schedule, and sent to a self-driving vehicle. The self-driving vehicle executes the mission such that the part is supplied to the assembly-line location in accordance with the part-supply schedule.
-
公开(公告)号:US12122367B2
公开(公告)日:2024-10-22
申请号:US17470087
申请日:2021-09-09
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher Gariepy , Yvan Geoffrey Rodrigues , Matthew Lord , Ivor Wanders , Jason Mercer , James Servos , Roydyn Clayton
IPC: B60W30/09 , B60W30/165 , G01C21/34 , G01C21/36
CPC classification number: B60W30/09 , B60W30/165 , G01C21/343 , G01C21/3667
Abstract: The various embodiments described herein generally relate to systems and methods for operating one or more self-driving vehicles. In some embodiments, the self-driving vehicles may include a vehicle processor being operable to: control the vehicle to navigate an operating environment in an initial vehicle navigation mode; monitor for one or more trigger conditions indicating a possible change for the vehicle navigation mode; detect a trigger condition; determine a prospective vehicle navigation mode associated with the detected trigger condition; determine whether to change from the initial vehicle navigation mode to the prospective vehicle navigation mode; and in response to determining to change from the initial vehicle navigation mode to the prospective vehicle navigation mode, adjust one or more vehicle attributes corresponding to the prospective vehicle navigation mode, otherwise continue to operate the vehicle in the initial vehicle navigation mode.
-
公开(公告)号:US11872706B2
公开(公告)日:2024-01-16
申请号:US17979597
申请日:2022-11-02
Applicant: Clearpath Robotics Inc.
Inventor: Daniel Cantor , Ryan Christopher Gariepy , Roydyn Clayton , Yvan Geoffrey Rodrigues , Anthony William Tod , Bryce William Vondervoort
CPC classification number: B25J9/1666 , B25J5/007 , G05B15/02 , G05B2219/31007 , G05B2219/40298 , G05D1/00 , G05D1/02
Abstract: Systems and methods for process tending with a robot arm are presented. The system comprises a robot arm and robot arm control system mounted on a self-driving vehicle, and a server in communication with the vehicle and/or robot arm control system. The vehicle has a vehicle control system for storing a map and receiving a waypoint based on a process location provided by the server. The robot arm control system stores at programs that is executable by the robot arm. The vehicle control system autonomously navigates the vehicle to the waypoint based on the map, and the robot arm control system selects a target program from the stored programs based on the process location and/or a process identifier.
-
公开(公告)号:US20230124091A1
公开(公告)日:2023-04-20
申请号:US17979597
申请日:2022-11-02
Applicant: Clearpath Robotics Inc.
Inventor: Daniel CANTOR , Ryan Christopher Gariepy , Roydyn Clayton , Yvan Geoffrey Rodrigues , Anthony William Tod , Bryce William Vondervoort
Abstract: Systems and methods for process tending with a robot arm are presented. The system comprises a robot arm and robot arm control system mounted on a self-driving vehicle, and a server in communication with the vehicle and/or robot arm control system. The vehicle has a vehicle control system for storing a map and receiving a waypoint based on a process location provided by the server. The robot arm control system stores at programs that is executable by the robot arm. The vehicle control system autonomously navigates the vehicle to the waypoint based on the map, and the robot arm control system selects a target program from the stored programs based on the process location and/or a process identifier.
-
公开(公告)号:US20250018938A1
公开(公告)日:2025-01-16
申请号:US18898757
申请日:2024-09-27
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher Gariepy , Yvan Geoffrey Rodrigues , Matthew Lord , Ivor Wanders , Jason Mercer , James Servos , Roydyn Clayton
IPC: B60W30/09 , B60W30/165 , G01C21/34 , G01C21/36
Abstract: The various embodiments described herein generally relate to systems and methods for operating one or more self-driving vehicles. In some embodiments, the self-driving vehicles may include a vehicle processor being operable to: control the vehicle to navigate an operating environment in an initial vehicle navigation mode; monitor for one or more trigger conditions indicating a possible change for the vehicle navigation mode; detect a trigger condition; determine a prospective vehicle navigation mode associated with the detected trigger condition; determine whether to change from the initial vehicle navigation mode to the prospective vehicle navigation mode; and in response to determining to change from the initial vehicle navigation mode to the prospective vehicle navigation mode, adjust one or more vehicle attributes corresponding to the prospective vehicle navigation mode, otherwise continue to operate the vehicle in the initial vehicle navigation mode.
-
公开(公告)号:US11842315B2
公开(公告)日:2023-12-12
申请号:US17212922
申请日:2021-03-25
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher Gariepy , Simon Drexler , Roydyn Clayton , Sam Adrian Jenkins , Pavel Bovbel , Yvan Geoffrey Rodrigues
IPC: G06Q10/00 , G06Q10/083 , G06Q10/0631
CPC classification number: G06Q10/083 , G06Q10/06313
Abstract: Systems and methods for autonomous lineside delivery to an assembly-line using a self-driving vehicle are disclosed, comprising receiving a part-supply schedule having a part identifier identifying a part to be supplied, an assembly-line location to be supplied with the part, and a delivery time for supplying the part to the assembly-line location. A mission is generated based on the schedule, and sent to a self-driving vehicle. The self-driving vehicle executes the mission such that the part is supplied to the assembly-line location in accordance with the part-supply schedule.
-
公开(公告)号:US20240270240A1
公开(公告)日:2024-08-15
申请号:US18645748
申请日:2024-04-25
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher Gariepy , Yvan Geoffrey Rodrigues , Matthew Lord , Ivor Wanders , Jason Mercer , James Servos , Roydyn Clayton
IPC: B60W30/09 , B60W30/165 , G01C21/34 , G01C21/36
CPC classification number: B60W30/09 , B60W30/165 , G01C21/343 , G01C21/3667
Abstract: The various embodiments described herein generally relate to systems and methods for operating one or more self-driving vehicles. In some embodiments, the self-driving vehicles may include a vehicle processor being operable to: control the vehicle to navigate an operating environment in an initial vehicle navigation mode; monitor for one or more trigger conditions indicating a possible change for the vehicle navigation mode; detect a trigger condition; determine a prospective vehicle navigation mode associated with the detected trigger condition; determine whether to change from the initial vehicle navigation mode to the prospective vehicle navigation mode; and in response to determining to change from the initial vehicle navigation mode to the prospective vehicle navigation mode, adjust one or more vehicle attributes corresponding to the prospective vehicle navigation mode, otherwise continue to operate the vehicle in the initial vehicle navigation mode.
-
公开(公告)号:US20220073062A1
公开(公告)日:2022-03-10
申请号:US17470087
申请日:2021-09-09
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher Gariepy , Yvan Geoffrey Rodrigues , Matthew Lord , Ivor Wanders , Jason Mercer , James Servos , Roydyn Clayton
IPC: B60W30/09 , B60W30/165
Abstract: The various embodiments described herein generally relate to systems and methods for operating one or more self-driving vehicles. In some embodiments, the self-driving vehicles may include a vehicle processor being operable to: control the vehicle to navigate an operating environment in an initial vehicle navigation mode; monitor for one or more trigger conditions indicating a possible change for the vehicle navigation mode; detect a trigger condition; determine a prospective vehicle navigation mode associated with the detected trigger condition; determine whether to change from the initial vehicle navigation mode to the prospective vehicle navigation mode; and in response to determining to change from the initial vehicle navigation mode to the prospective vehicle navigation mode, adjust one or more vehicle attributes corresponding to the prospective vehicle navigation mode, otherwise continue to operate the vehicle in the initial vehicle navigation mode.
-
公开(公告)号:US12182752B2
公开(公告)日:2024-12-31
申请号:US18455243
申请日:2023-08-24
Applicant: CLEARPATH ROBOTICS INC.
Inventor: Ryan Christopher Gariepy , Simon Drexler , Roydyn Clayton , Sam Adrian Jenkins , Pavel Bovbel , Yvan Geoffrey Rodrigues
IPC: G06Q10/00 , G06Q10/0631 , G06Q10/083
Abstract: Systems and methods for autonomous lineside delivery to an assembly-line using a self-driving vehicle are disclosed, comprising receiving a part-supply schedule having a part identifier identifying a part to be supplied, an assembly-line location to be supplied with the part, and a delivery time for supplying the part to the assembly-line location. A mission is generated based on the schedule, and sent to a self-driving vehicle. The self-driving vehicle executes the mission such that the part is supplied to the assembly-line location in accordance with the part-supply schedule.
-
-
-
-
-
-
-
-
-