Abstract:
Micromechanical semiconductor sensing device comprises a micromechanical sensing structure being configured to yield an electrical sensing signal, and a piezoresistive sensing device provided in the micromechanical sensing structure, said piezoresistive sensing device being arranged to sense a mechanical stress disturbing the electrical sensing signal and being configured to yield an electrical disturbance signal based on the sensed mechanical stress disturbing the electrical sensing signal.
Abstract:
An electronic array may include a first electronic component which has a first operation voltage, a second electronic component which has a second operation voltage, wherein the second operation voltage is different from the first operation voltage and wherein the first electronic component and the second electronic component are arranged over each other, an isolation layer between the first electronic component and the second electronic component, wherein the isolation layer electrically isolates the first electronic component from the second electronic component, at least one connection layer formed at least partially between the isolation layer and the first electronic component or between the isolation layer and the second electronic component, wherein the connection layer includes a first portion and a second portion, wherein the first portion and the second portion each extend from the corresponding electronic component to the isolation layer, wherein the first portion includes an electrically isolating material which fixes the isolation layer to the corresponding electronic component and wherein the second portion includes an electrically conductive material which electrically couples the corresponding electronic component to the isolation layer.
Abstract:
A graphene layer is generated on a substrate. A plastic material is deposited on the graphene layer to at least partially cover the graphene layer. The substrate is separated into at least two substrate pieces.
Abstract:
A method includes arranging multiple semiconductor chips over a first carrier and depositing a first material layer over surfaces of the multiple semiconductor chips, wherein depositing the first material layer includes a vapor deposition, and wherein the first material layer includes at least one of an organic material and a polymer.
Abstract:
A sensor arrangement according to an embodiment comprises a transmitter to be arranged inside a battery cell and to transmit a signal based on at least one sensed operational parameter of the battery cell wirelessly.
Abstract:
A photoacoustic gas sensor device for analyzing gas includes an emitter module and a pressure-sensitive module. The emitter module is arranged on a carrier substrate and emits light pulses. The pressure-sensitive module is arranged on the carrier substrate within a reference gas volume. The reference gas volume is separated from a volume intended to be filled with a gas to be analyzed. Further, the pressure-sensitive module generates a sensor signal indicating information on an acoustic wave caused by light pulses emitted by the emitter module interacting with a reference gas within the reference gas volume. Additionally, the emitter module is arranged so that light pulses emitted by the emitter module reach the reference gas volume after crossing the volume intended to be filled with the gas to be analyzed.
Abstract:
A system and a method for forming a packaged MEMS device are disclosed. In one embodiment a packaged MEMS device includes a MEMS device having a first main surface with a first area along a first direction and a second direction, a membrane disposed on the first main surface of the MEMS device and a backplate adjacent to the membrane. The packaged MEMS device further includes an encapsulation material that encapsulates the MEMS device and that defines a back volume, the back volume having a second area along the first direction and the second direction, wherein the first area is smaller than the second area.
Abstract:
An apparatus for determining a state of a rechargeable battery or of a battery has a sensor device and an evaluation device. The sensor device brings about an interaction between an optical signal and a part of the rechargeable battery or of the battery, which part indicates optically acquirable information about a state of the rechargeable battery or of the battery, and detects an optical signal caused by the interaction. The sensor device furthermore provides a detection signal having information about the detected optical signal. The evaluation device determines information about a state of the rechargeable battery or of the battery on the basis of the information of the detection signal. Furthermore, the evaluation device provides a state signal having the information about the determined state.
Abstract:
A method for producing a component and device including a component is disclosed. A basic substrate having paper as substrate material is provided, at least one integrated circuit is applied to the basic substrate, the at least one integrated circuit applied on the basic substrate is enveloped with an encapsulant, and at least parts of the basic substrate are removed from the at least one enveloped integrated circuit.
Abstract:
One example implementation of a mirror system comprises a carrier, and a first chip package arranged on a surface of the carrier and comprising a first MEMS mirror. Furthermore, the mirror system comprises a second chip package arranged on the surface of the carrier and comprising a second MEMS mirror. The mirror system furthermore comprises a reflective element arranged over the surface of the carrier and above the first chip package and the second chip package in such a way that a radiation that is incident in the mirror system and is reflected by the first MEMS mirror in the direction of the reflective element is reflected by the reflective element in the direction of the second MEMS mirror.