GROUP III-NITRIDE (III-N) DEVICES WITH REDUCED CONTACT RESISTANCE AND THEIR METHODS OF FABRICATION

    公开(公告)号:US20220037322A1

    公开(公告)日:2022-02-03

    申请号:US17501914

    申请日:2021-10-14

    Abstract: A device including a III-N material is described. In an example, the device has a terminal structure with a central body and a first plurality of fins, and a second plurality of fins, opposite the first plurality of fins. A polarization charge inducing layer including a III-N material in the terminal structure. A gate electrode is disposed above and on a portion of the polarization charge inducing layer. A source structure is on the polarization charge inducing layer and on sidewalls of the first plurality of fins. A drain structure is on the polarization charge inducing layer and on sidewalls of the second plurality of fins. The device further includes a source structure and a drain structure on opposite sides of the gate electrode and a source contact on the source structure and a drain contact on the drain structure.

    Group III-nitride light emitting devices including a polarization junction

    公开(公告)号:US11183613B2

    公开(公告)日:2021-11-23

    申请号:US16643924

    申请日:2017-09-29

    Abstract: Light emitting devices employing one or more Group III-Nitride polarization junctions. A III-N polarization junction may include two III-N material layers having opposite crystal polarities. The opposing polarities may induce a two-dimensional charge carrier sheet within each of the two III-N material layers. Opposing crystal polarities may be induced through introduction of an intervening material layer between two III-N material layers. Where a light emitting structure includes a quantum well (QW) structure between two Group III-Nitride polarization junctions, a 2D electron gas (2DEG) induced at a first polarization junction and/or a 2D hole gas (2DHG) induced at a second polarization junction on either side of the QW structure may supply carriers to the QW structure. An improvement in quantum efficiency may be achieved where the intervening material layer further functions as a barrier to carrier recombination outside of the QW structure.

    Stacked group III-nitride transistors for an RF switch and methods of fabrication

    公开(公告)号:US10811526B2

    公开(公告)日:2020-10-20

    申请号:US16461353

    申请日:2016-12-30

    Abstract: A semiconductor device includes a silicon pillar disposed on a substrate, the silicon pillar has a sidewall. A group III-N semiconductor material is disposed on the sidewall of the silicon pillar. The group III-N semiconductor material has a sidewall. A doped source structure and a doped drain structure are disposed on the group III-N semiconductor material. A polarization charge inducing layer is disposed on the sidewall of the group III-N semiconductor material between the doped drain structure and the doped source structure. A plurality of portions of gate dielectric layer is disposed on the sidewalls of the group III-N semiconductor material and between the polarization charge inducing layer. A plurality of resistive gate electrodes separated by an interlayer dielectric layer are disposal adjacent to each of the plurality of portions of the gate dielectric layer. A source metal layer is disposed below and in contact with the doped source structure.

    Group III-N material conductive shield for high frequency metal interconnects

    公开(公告)号:US10804214B2

    公开(公告)日:2020-10-13

    申请号:US16302420

    申请日:2016-06-27

    Abstract: Integrated circuit structures configured with low loss transmission lines are disclosed. The structures are implemented with group III-nitride (III-N) semiconductor materials, and are well-suited for use in radio frequency (RF) applications where high frequency signal loss is a concern. The III-N materials are effectively used as a conductive ground shield between a transmission line and the underlying substrate, so as to significantly suppress electromagnetic field penetration at the substrate. In an embodiment, a group III-N polarization layer is provided over a gallium nitride layer, and an n-type doped layer of indium gallium nitride (InzGa1-zN) is provided over or adjacent to the polarization layer, wherein z is in the range of 0.0 to 1.0. In addition to providing transmission line ground shielding in some locations, the III-N materials can also be used to form one or more active and/or passive components (e.g., power amplifier, RF switch, RF filter, RF diode, etc).

    Vertical group III-N devices and their methods of fabrication

    公开(公告)号:US10770575B2

    公开(公告)日:2020-09-08

    申请号:US16321722

    申请日:2016-09-30

    Abstract: Vertical Group III-N devices and their methods of fabrication are described. In an example, a semiconductor structure includes a doped buffer layer above a substrate, and a group III-nitride (III-N) semiconductor material disposed on the doped buffer layer, the group III-N semiconductor material having a sloped sidewall and a planar uppermost surface. A drain region is disposed adjacent to the doped buffer layer. An insulator layer is disposed on the drain region. A polarization charge inducing layer is disposed on and conformal with the group III-N semiconductor material, the polarization charge inducing layer having a first portion disposed on the sloped sidewall of the group III-N semiconductor material and a second portion disposed on the planar uppermost surface of the group III-N semiconductor material. A gate structure is disposed on the first portion of the polarization charge inducing layer.

Patent Agency Ranking