Abstract:
A backlight device (2) for emitting illumination light outward includes white light-emitting diodes (4w) for emitting white light, and red and blue light-emitting diodes (4r, 4b) for emitting red light and blue light, respectively. The backlight device (2) further includes a lighting drive circuit (lighting control portion) (11) for controlling the lighting/driving of each of the light-emitting diodes (4w, 4r, 4b).
Abstract:
A backlight structure includes: light source modules 1 and 1; a light guide plate 2 disposed between the light source modules 1 and 1; a rear plate 3 disposed at the rear side of the light source modules 1 and the light guide plate 2; a fan-mount plate 4 disposed at the rear side of the rear plate 3; and a cooling fan 5 mounted on the fan-mount plate 4. The rear plate 3 has portions thereof at the rear side of the light source modules 1 and 1 formed into protruding portions 3a, and has a portion thereof between the upper and lower protruding portions 3a formed into a flat surface 3b. A cooling wind passage 11 is formed between a front surface 4a of the fan-mount plate and the flat surface 3b of the rear plate. Heat from LED chips 1a of the light source modules is made to concentrate at the protruding portions 3a of the rear plate and is then rejected into the outside by the wind guided from the cooling fan 5 into the cooling wind passage 11.
Abstract:
A side-light type backlight includes a light source having a plurality of LEDs and a light guide plate, where opposing end surfaces of the light guide plate define light incidence surfaces, with the plurality of LEDs being arranged at one of the light incidence surfaces. A number, M, of the LEDs are arranged in a longitudinal direction of the light incidence surface of the light guide plate, and are electrically connected such that there are a plurality of groups of the LEDs with each group having N LEDs mutually adjacently arranged in series. The groups are adjacently arranged in a longitudinal line, and at least one of the groups of LEDs is a separate parallel connection from an adjacent group of LEDs. The plurality of LEDs includes LEDs having a plurality of colors, and the LEDs arranged in series include LEDs having different colors.
Abstract:
In the case where RGB light emitting elements are used as light sources of a surface emitting type illumination device, the occurrence of color irregularity in the vicinity of a light incident surface is prevented, so that uniform white light is obtained on an entire light outgoing surface. In a light source device including light emitting elements of respective colors including red light emitting elements, green light emitting elements, and blue light emitting elements that emit light in a red (R) wavelength range, light in a green (G) wavelength range, and light in a blue (B) wavelength range, respectively, the light emitting elements being provided on one principal surface of a substrate, the light emitting elements of the respective colors are aligned in a longitudinal direction of the substrate, the number of the green light emitting elements is larger than the number of each of the red light emitting elements and the blue light emitting elements, and the light emitting elements of the respective colors in the longitudinal direction of the substrate are aligned at regular Intervals for each of the colors.
Abstract:
A side light type backlight includes a light source including a plurality of LEDs, and a light guide plate. One of the end surfaces of the light guide plate is a light incidence surface at which a plurality of R-LEDs, a plurality of G-LEDs and a plurality of B-LEDs are arranged. LEDs satisfy the relationship of: a distribution range of light emitted from G-LEDs
Abstract:
A light source device, a backlight unit, and a liquid crystal display device are each capable of improving uniformity of a luminance and a color of a display surface. The light source device includes a board; a plurality of point light sources arranged on a surface of the board and connected in series; and a variable resistor, wherein the variable resistor is disposed on the surface on which the plurality of point light sources are arranged of the board; at least one point light source arranged on an end side among the plurality of point light sources is connected in parallel to the variable resistor; and the board has a through-hole in a region where a variable resistor is located.
Abstract:
A backlight unit has a light source, a reflection sheet, a light guide plate, an air space, and a diffuser, wherein the reflection sheet, the light guide plate, the air space, and the diffuser are overlaid in this order. The light source is configured to arrange individual light sources having different spectra or different light emission quantities near an incident plane of the light guide plate, and on a plane facing the reflection sheet of the light guide plate, scatter dots are disposed which take light propagating through the light guide plate out of the reflection sheet side. The backlight unit and a liquid crystal display device including the same have excellent display quality.
Abstract:
A substrate processing apparatus includes an anti-reflection film processing block, a resist film processing block, and a resist cover film processing block. In the processing blocks, an anti-reflection film, a resist film, and a resist cover film are formed on a substrate, respectively. Additionally, a film formed at a peripheral edge of the substrate is removed. The film formed at the peripheral edge of the substrate is removed by supplying a removal liquid capable of dissolving and removing the film to the peripheral edge of the substrate during rotation. When the peripheral edge of the film is removed, the position of the substrate is corrected such that the center of the substrate coincides with the center of a rotation shaft.
Abstract:
A liquid crystal display device efficiently uses light from light sources by positioning the light sources with respect to a light-guiding member for back lighting with minimized air gap therebetween. The light-guiding member provided on a backside of a liquid crystal panel. The light sources emit light toward a side surface of the light-guiding member. The light sources are aligned and fixed to a board that is fixed to the light-guiding member.
Abstract:
A side light type backlight includes a light source including a plurality of LEDs, and a light guide plate. One of the end surfaces of the light guide plate is a light incidence surface at which a plurality of R-LEDs, a plurality of G-LEDs and a plurality of B-LEDs are arranged. LEDs satisfy the relationship of: a distribution range of light emitted from G-LEDs