Abstract:
The invention relates to a microplate reader and a respective method, wherein the microplate reader comprises at least one measuring device and a holding device for accommodating at least one microplate and for positioning the samples-containing wells of this(these) microplate(s) in relation to the at least one measuring device. The at least one measuring device is used for detecting light which is emitted by samples in wells of a microplate inserted in this microplate reader and/or which is influenced by samples transilluminated by light in wells of a microplate inserted in this microplate reader. The microplate reader comprises a control unit for controlling the temperature of a gas atmosphere surrounding the wells containing the samples of microplates used in this microplate reader.
Abstract:
A portable chemical analytical apparatus to analyze a test swipe having a base; a chemically treated pad containing the swiped sample positioned in a white zone above the base; and a tab attached to one side of the base. The apparatus includes a heater to warm the test swipe to a predetermined temperature; a clamp to secure the test swipe to the heater; one or more pumps to dispense one or more chemicals onto the test swipe from a disposable cartridge; a fan to remove chemical vapors rising a predetermined distance from the test swipe; and a camera to capture an image of the test swipe for un-biased automated analysis, and displayed on an LCD screen.
Abstract:
A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
Abstract:
Various embodiments of the disclosure relate to an optical system that includes a base unit and one or more cartridges that are removably attachable to the base unit. The one or more cartridges can include optical components configured to output a beam of light (e.g., a laser). The base unit can be configured to combine multiple beams of light (e.g., emitted by multiple cartridges) and output a combined beam of light. The cartridges can be interchanged to modify the light output by the optical system. The optical system can include thermally one or more stable enclosures and/or a temperature controller. The optical system can include one or more alignment adjustment optical components configured to adjust the alignment of one or more light beams.
Abstract:
A spectroscopic device includes a lamp house accommodating a light source inside, a spectrometer configured to disperse light from the lamp house, a temperature measurement means for measuring a temperature of the spectrometer, a heating means for heating the spectrometer, a storage means and a control unit. The storage means stores the detection temperature of the temperature measurement means at a time when an optical axis is stable in the spectrometer in a state where the light source is illuminated. The control unit is configured to control operation of the heating means, and to cause the heating means to operate, when the light source is illuminated from a light-off state, until a detection temperature of the temperature measurement means reaches the detection temperature stored in the storage means.
Abstract:
A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
Abstract:
A device for measuring oxygen uptake and carbon dioxide production by a respiring subject based on the use of absorption spectroscopy. An absorption spectrometer using cavity enhanced absorption spectroscopy at 763 nm to measure oxygen concentration and direct absorption or wavelength modulation spectroscopy at 2.0035 μm for carbon dioxide concentration is incorporated into a breathing tube in proximity to the respiring subject. This provides measurements of oxygen and carbon dioxide concentration with a good temporal resolution which can be combined with measurements of flow rate as a function of time to obtain oxygen uptake and carbon dioxide production on a breath-by-breath basis. The device can also measure the concentration of water vapor and of anaesthetic gases in exhaled breath.
Abstract:
The automatic analyzer detects a trace amount of reaction solution at a high S/N with stability. The analyzer allows a photomultiplier to detect light from the reaction solution containing a luminescent substance through an optical window. To process the output from the photomultiplier to analyze the amount of the luminescent substance contained in the reaction solution, an optical transmission system is interposed between the optical window and the photomultiplier. The optical transmission system includes a light inlet opposed to the optical window; a light outlet opposed to the light-receiving surface of the detector; and a reflector on which an incident beam of light from the light inlet is reflected to propagate to the light outlet. This configuration allows the effects of temperature-dependent noise from a flow cell to be reduced while preventing a drop in the amount of light from the luminescent substance, thereby implementing analysis at a high S/N.
Abstract:
A microplate reader and method has at least one measuring device and a holding device for accommodating at least one microplate and for positioning samples-containing wells of microplates in relation to the measuring device. The at least one measuring device is used for detecting light emitted by samples in wells of a microplate and/or which is influenced by samples transilluminated by light in the wells. The microplate reader has a control unit for controlling the composition of a gas atmosphere surrounding the wells containing the samples. A respective use is characterized particularly in that living cells are measured in a controlled gas atmosphere, wherein the living cells are chosen from microaerophilic, optionally anaerobic and obligatorily anaerobic microorganisms as well as fungi and eukaryotic cells.
Abstract:
The present invention provides miniaturized instruments for conducting chemical reactions where control of the reaction temperature is desired or required. Specifically, this invention provides chips and optical systems for performing and monitoring temperature-dependent chemical reactions. The apparatus and methods embodied in the present invention are particularly useful for high-throughput and low-cost amplification of nucleic acids.