Abstract:
A temperature measurement system configured to measure a temperature of a target object having a first main surface and a second main surface includes a light source unit configured to emit output light penetrating the target object and including a first wavelength range and a second wavelength range; a measurement unit configured to measure a spectrum of reflected light; an optical path length ratio calculator configured to calculate an optical path length ratio between the output light of the first wavelength range and the output light of the second wavelength range; and a temperature calculator configured to calculate the temperature of the target object based on the optical path length ratio and a previously investigated relationship between the temperature of the target object and a refractive index ratio between the output light of the first wavelength range and the output light of the second wavelength range.
Abstract:
Provided is a concentration measurement apparatus for measuring a concentration of a measurement object using an infrared ray, the concentration measurement apparatus including a signal acquisition unit configured to acquire a detection signal, a temperature information acquisition unit configured to acquire temperature information, a correction unit configured to output a correction signal obtained by correcting a temperature dependency of the detection signal based on the temperature information, and a calculation unit configured to calculate the concentration of the measurement object according to the correction signal using calibration curve data at a predetermined reference temperature for calculating the concentration of the measurement object, in which the correction unit is configured to output the correction signal obtained by performing linear correction of the detection signal using, among predetermined correction parameters different for three or more respective temperature segments, the correction parameter in a temperature segment corresponding to the temperature information.
Abstract:
A concentration measurement device for measuring the concentration of a measured fluid within a measurement cell by detecting transmitted light that has passed through the measurement cell having a light incidence window and a light emission window disposed opposing to each other, comprising a reflected-light detector for detecting reflected light of the light incidence window.
Abstract:
An oxygen sensing system comprises a substrate structured to communicate optical signals. An oxygen sensing layer is disposed on the substrate and comprises an oxygen sensing molecule in a matrix in a first unexcited state and formulated to: (a) be excited by a first optical signal to move to a second state; (b) be quenched in the second state by oxygen; and (c) emit a second optical signal corresponding to an amount of oxygen. A protective layer, disposed on the oxygen sensing layer, includes at least one of i) an oleophobic layer and ii) an anti-fouling layer. A controller is optically coupled to the substrate and structured to generate the first optical signal, receive the second optical signal and determine oxygen concentration from the second optical signal.
Abstract:
The present application describes an optical sensor for measuring oxygen gas levels in a medium. The optical sensor includes a substrate having a first and second surface. The optical sensor also includes a first coating applied on the first surface of the substrate. The first coating may include an oxygen impermeable matrix doped with a first fluorophore. The optical sensor may include a second coating applied on the substrate. The present application also describes a capnography system for measuring oxygen including an optical sensor and an algorithm to estimate the maxima of oxygen levels from instantaneous oxygen levels and calculating instantaneous carbon dioxide levels from the difference between average maximum oxygen gas level and instantaneous oxygen gas level.
Abstract:
Apparatus, systems, methods, and related computer program products for handling temperature variation with optoelectronic components of a hazard detection system are described herein. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a temperature of an environment of the hazard detection system. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a smoke condition of an environment of the hazard detection system. Optoelectronic components of the hazard detection system may be optically coupled to determine a smoke condition of an environment of the hazard detection system. Multiple optoelectronics of the hazard detection system may be operative to detect forward scatter and back scatter of one or more types of light to determine a characteristic of a hazard particle.
Abstract:
A photometer and associated method includes a source of radiation to be directed through a sample and a detector stage configured to measure radiation after passing through the sample. A voltage follower circuit is connected to the detector and is configured to provide an output signal which varies as a function of the detector output voltage and which varies as a function of the ambient temperature. A processing subsystem is configured to determine a temperature compensation factor from the voltage follower circuit output signal.
Abstract:
This calorie measurement device is provided with the following: a light-emission unit that exposes a food article to light that contains near-infrared wavelengths; a light-reception unit that receives transmitted light that had passed through the food article and/or reflected light that was reflected by the food article; a correction unit that computes a base absorbance for the food article on the basis of the transmitted and/or reflected light and corrects the light intensity measured by the light-reception unit and/or the computed base absorbance on the basis of affecting factors, said affecting factors being those that affect the absorption and reflection of light by the food article but are essentially unaffected by the light-absorption and light-reflection properties of the components of the food article; and an analysis unit that computes an analysis value indicating the caloric content of the food article on the basis of the corrected light intensity measured by the light-reception unit and/or the corrected base absorbance.
Abstract:
An optical absorption gas sensor for detecting an analyte gas comprises a gas sample receiving chamber, at least one light emitting diode (LED) and a photodiode or other photosensor. A plurality of light pulses are generated by passing pulses of current through the at least one LED. The current through the at least one LED is measured a plurality of times during each pulse and taken into account when generating a compensated output signal. The transfer ratio between LED current and photodiode output signal is calculated a plurality of times during each pulse. An ADC measures the LED and photodiode currents alternately. The LED pulses are generated by inductor discharge flyback and the period of time for which current is supplied to the inductor prior to each pulse is selected so that the photodiode output current is at an optimal region within the input range of the ADC. At least the temperature of the at least one LED is measured and taken into account when generating the compensated output signal. Thus, rather than providing especially careful control of the LED pulses, the pulses are measured, enabling a simpler, lower power circuit which is tolerant of variations in temperature to be provided.
Abstract:
An oxygen sensing system comprises a substrate structured to communicate optical signals. An oxygen sensing layer is disposed on the substrate and comprises an oxygen sensing molecule in a matrix in a first unexcited state and formulated to: (a) be excited by a first optical signal to move to a second state; (b) be quenched in the second state by oxygen; and (c) emit a second optical signal corresponding to an amount of oxygen. A protective layer is disposed on the oxygen sensing layer. The protective layer includes at least one of i) an oleophobic layer configured to protect the oxygen sensing layer from hydrocarbons and organic solvents and ii) an anti-fouling layer configured to protect the oxygen sensing layer from biofouling. A controller is optically coupled to the substrate and structured to generate the first optical signal, receive the second optical signal and determine oxygen concentration from the second optical signal.