Abstract:
An administrator provisions a virtual disk in a remote storage platform and defines policies for that virtual disk. A virtual machine writes to and reads from the storage platform using any storage protocol. Virtual disk data within a failed storage pool is migrated to different storage pools while still respecting the policies of each virtual disk. Snapshot and revert commands are given for a virtual disk at a particular point in time and overhead is minimal. A virtual disk is cloned utilizing snapshot information and no data need be copied. Any number of Zookeeper clusters are executing in a coordinated fashion within the storage platform, thus increasing overall throughput. A timestamp is generated that guarantees a monotonically increasing counter, even upon a crash of a virtual machine. Any virtual disk has a “hybrid cloud aware” policy in which one replica of the virtual disk is stored in a public cloud.
Abstract:
Disclosed herein are system, method, and computer program product embodiments for virtual machine (VM) backup from a storage snapshot. An embodiment operates by receiving selective backup parameters including a VM to backup and then creating a VM snapshot associated with the VM. Next, an offset table associated with a virtual disk of the VM stored on a storage is retrieved. The embodiment further includes generating a storage snapshot and deleting the VM snapshot and then promoting the storage snapshot to a new logical unit number. The promoted storage snapshot is then mounted to the backups server. The virtual disk data is backed up to a backup storage using the offset table from the storage snapshot. The storage snapshot is dismounted from the backup server and deleted from the storage.
Abstract:
Embodiments in accordance with the present invention disclose a method, computer program product, and system for optimizing performance of a computer backup solution that includes at least two data movers. The automated method includes measuring data mover performance during operation of a backup cycle, and optimizing the performance of data movers by increasing or decreasing the number of threads operating concurrently in the data movers. The method further includes computation of performance rankings of the data movers and shifting workload among the data movers in accordance with their respective performance rankings, such that the computer backup solution converges toward an optimized configuration.
Abstract:
A host server hosting one or more virtual machines can back up host volumes and the one or more virtual machines installed thereon in an application-consistent manner. In one implementation, a host-level requestor instructs a host-level writer to identify which virtual machines qualify for application-consistent backups. The host-level requestor then instructs the host-level writer to initiate virtual machine backups through guest-level requesters in each appropriately-configured virtual machine, wherein the virtual machines create application-consistent backups within the virtual machine volumes. The host-level requester then initiates snapshots of the server volumes on the host-level. The virtual machine-level snapshots can thus be retrieved from within the host-level snapshots of the server volumes.
Abstract:
A method and apparatus for performing granular restoration from machine images stored on sequential backup media is disclosed. In one embodiment, the method for performing granular restoration from machine images stored on sequential backup media includes processing at least one machine image file to identify at least one database file and at least one data object that is arranged within the at least one database file and generating mapping information regarding the at least one data object within the at least one machine image file, wherein the at least one machine image is to be stored on the sequential backup media.
Abstract:
A redundancy method, system, and apparatus, which can acquire first description information of a cloud application needing redundancy, where the first description information includes information about a source virtual machine and a source network which are used at a production site by the cloud application needing redundancy; and can generate second description information of the cloud application needing redundancy at a redundancy site based on the first description information that gives an overall description about the cloud application needing redundancy, where the second description information gives an overall description about the deployment of the cloud application needing redundancy at the redundancy site; and the redundancy site is capable of acquiring the second description information, to recover the cloud application needing redundancy at the redundancy site, thereby implementing redundancy based on a cloud application.
Abstract:
A method for creating a software performance testing environment based on a virtual machine, wherein the method comprises: in response to obtaining a hard disk read/write request triggered by a virtual CPU of the virtual machine, notifying a virtual CPU scheduler to record a CPU time quota t1 already consumed by the virtual CPU in a current CPU schedule period; in response to detecting completion of hard disk read/write processing corresponding to the hard disk read/write request, predicting a hard disk read/write latency t corresponding to the hard disk read/write request in a target environment; notifying the virtual CPU scheduler to determine a CPU time quota already consumed by the virtual CPU in the current CPU schedule period based on the recorded CPU time quota t1 and the hard disk read/write latency t; and adjusting a system clock of the virtual machine based on the determined CPU time quota already consumed by the virtual CPU in the current CPU schedule period. The method may obtain, in the created software performance testing environment, a software performance testing result consistent with the result obtained under a highly configured server in the target environment.
Abstract:
The present invention relates to a virtual machine, and specifically discloses a method and apparatus for creating a software performance testing environment based on a virtual machine, wherein the method comprises: in response to obtaining a hard disk read/write request triggered by a virtual CPU of the virtual machine, notifying a virtual CPU scheduler to record a CPU time quota t1 already consumed by the virtual CPU in a current CPU schedule period; in response to detecting completion of hard disk read/write processing corresponding to the hard disk read/write request, predicting a hard disk read/write latency t corresponding to the hard disk read/write request in a target environment; notifying the virtual CPU scheduler to determine a CPU time quota already consumed by the virtual CPU in the current CPU schedule period based on the recorded CPU time quota t1 and the hard disk read/write latency t; and adjusting a system clock of the virtual machine based on the determined CPU time quota already consumed by the virtual CPU in the current CPU schedule period. The method according to the embodiments of the present invention may obtain, in the created software performance testing environment, a software performance testing result consistent with the result obtained under a highly configured server in the target environment.
Abstract:
Methods and systems for allocating resources in a virtual desktop resource environment are provided. A method includes making a prediction on the future demand for processes running on a distributed environment with several hosts. The prediction is based on the process demand history and includes the removal of historic process demand glitches. Further, the prediction is used to perform a cost and benefit analysis for moving a candidate process from one host to another, and the candidate process is moved to a different host when the cost and benefit analysis recommends such move. In another embodiment, the predictions on future process demand are used for distributed power management by putting hosts in stand-by mode when the overall demand decreases or by adding hosts to the distributed environment when the load increases.
Abstract:
One or more unused bits of a virtual address range are allocated for aliasing so that multiple virtually addressed sub-pages can be mapped to a common memory page. When one bit is allocated for aliasing, dirty bit information can be provided at a granularity that is one-half of a memory page. When M bits are allocated for aliasing, dirty bit information can be provided at a granularity that is 1/(2M)-th of a memory page.