Abstract:
The present invention provides an emissive flat panel display device which is capable of performing a gate operation at a relatively low voltage of several V to several tens V using gate electrodes. In the emissive flat panel display device which includes a back panel which is constituted of a back substrate on which cathode electrodes having electron sources formed of carbon nanotubes and gate electrodes are formed, a face panel which forms phosphors and anode electrodes thereon, and a sealing frame which seals the back panel and the face panel, the difference between an electric field strength Emax for allowing the electron sources to obtain the required maximum emission current density and an electric field strength Emin which becomes the minimum emission current density is set to 1V/μm or less, and preferably 0.5V/μm or less.
Abstract:
A flat panel display device includes a first substrate, an electron emission assembly formed on the first substrate, a second substrate provided at a predetermined distance from the first substrate and forming a vacuum assembly with the first substrate, and an illumination assembly formed on the second substrate, the illumination assembly being illuminated by electrons emitted from the electron emission assembly. The illumination assembly includes at least one anode electrode formed on a surface of the second substrate facing the first substrate, phosphor layers formed in a predetermined pattern on the at least one anode electrode, and conductive layers formed of a carbon-based material on the phosphor layers.
Abstract:
An electron-emitting device contains a vertical emitter electrode patterned into multiple laterally separated sections situated between the electron-emissive elements, on one hand, and a substrate, on the other hand. The electron-emissive elements comprising carbon nanotubes are grown at a temperature range of 300° C. to 500° C. compatible with the thermal stress of the underlying substrate. The electron-emissive elements are grown on a granulized catalyst layer that provides a large surface area for growing the electron-emissive elements at such low temperature ranges. To ensure growth uniformity of the carbon nanotubes, the granularized substrate is soaked in a pre-growth plasma gas to enhance the surface diffusion properties of the granularized substrate for carbon diffusion.
Abstract:
Provided is a field emission display (FED) with a carbon nanotube emitter and a method of manufacturing the same. A gate stack that surrounds the CNT emitter has a mask layer that covers an emitter electrode adjacent to the CNT emitter, and a gate insulating film, a gate electrode, a focus gate insulating film (SiOx, X
Abstract translation:提供了具有碳纳米管发射体的场致发射显示器(FED)及其制造方法。 围绕CNT发射器的栅极堆叠具有覆盖与CNT发射极相邻的发射极的掩模层,以及栅极绝缘膜,栅极电极,聚焦栅极绝缘膜(SiO x X,X <2),以及形成在掩模层上的聚焦栅电极。 聚焦栅极绝缘膜的厚度为2μm以上,优选为3〜15μm,优选使用PECVD制造。 用于形成聚焦栅极绝缘膜和/或栅极绝缘膜的硅烷和硝酸的流量分别保持在50〜700sccm和700〜4,500sccm。 通过这样做,并且通过使氧化物变厚,氧化物不易开裂,因此不太容易产生泄漏电流。
Abstract:
Several ways are proposed to protect a field emission illumination device of a printer light source device. A two-terminal field emission light source structure makes use of carbon nanotubes as an electron emitter to be used as an exposure light source component of an optical printer head. The printer light source device has a low manufacturing cost, and can be matched with a photosensitive drum structure. The printer light source device is characterized by a casing coating and a light guide device to realize a light source of low cost and high efficiency.
Abstract:
A Field Emission Device (FED) having a ring-shaped emitter and its method of manufacture includes a ring-shaped emitter formed on a cathode exposed through an aperture of a gate electrode, has a shape corresponding to a shape of the aperture of the gate electrode, and has carbon nanotubes on edges thereof. The ring-shaped emitter is formed through an annealing process that controls the diffusion of a catalyst metal and silicon between a catalyst metal layer and a silicon layer.
Abstract:
Disclosed is a method of making a CNT device such as a memory switch, a field emission display, interconnect wiring, etc. The method includes steps of providing CNTs in contact with an electrode and selectively growing or depositing a layer of metal on top of the CNTs and the electrode. The layer of metal improves the electrical contact between the CNTs and the electrode. If a CNT memory switch is provided, the electrode can be embedded into dielectric or may lie on top of a dielectric substrate. In the case of interconnect wiring, an electrode can be provided embedded in dielectric and a via may be provided to the electrode. CNTs are disposed in the via, and the method provides that metal is selectively grown or deposited in the via, in contact with the CNTs and the electrode, thereby providing good electrical contact between the CNTs and the electrode.
Abstract:
Systems and methods are described for individually electrically addressable carbon nanofibers on insulating substrates. A method includes forming an electrically conductive interconnect on at least a part of an insulating surface on a substrate; and growing at least one fiber that is coupled to the electrically conductive interconnect.
Abstract:
A field emission type cold cathode device comprises a substrate, and a metal plating layer formed on the substrate, the metal plating layer contains at least one carbon structure selected from a group of fullerenes and carbon nanotubes, the carbon structure is stuck out from the metal plating layer and a part of the carbon structure is buried in the metal plating layer.
Abstract:
In a carbon nanotube (CNT) structure and a method of manufacturing the CNT structure, and in a field emission display (FED) device using the CNT structure and a method of manufacturing the FED device, the CNT structure includes a substrate, a plurality of buffer particles having a predetermined size coated on the substrate, a plurality of catalyst layers formed on surfaces of the buffer particles by annealing a catalyst material deposited on the substrate to a predetermined thickness so as to cover the buffer particles, and a plurality of CNTs grown from the catalyst layers.