Measurement device and printing apparatus

    公开(公告)号:US10308051B2

    公开(公告)日:2019-06-04

    申请号:US15466229

    申请日:2017-03-22

    Inventor: Tsugio Gomi

    Abstract: A measurement device includes a light source that radiates an illumination light on a measurement object; and a measurement unit that measures a measurement light that is reflection light obtained by the illumination light being reflected by the measurement object or transmitted light obtained by the illumination light passing through the measurement object. The illumination light is a plurality of illumination lights. In a case where the measurement object is positioned at a reference position, an illumination center at which an optical axis of each of the plurality of illumination lights and the measurement object intersect, and a measurement center that is a center of a measurement region of the measurement object measured by the measurement unit are positioned at different positions.

    Imaging method and apparatus
    133.
    发明授权

    公开(公告)号:US10302491B2

    公开(公告)日:2019-05-28

    申请号:US15507502

    申请日:2015-08-28

    Abstract: Apparatus for hyperspectral imaging, the apparatus including input optics that receive radiation reflected or radiated from a scene, a spatial modulator that spatially samples radiation received from the input optics to generate spatially sampled radiation, a spectral modulator that spectrally samples the spatially sampled radiation received from the spatial modulator to generate spectrally sampled radiation, a sensor that senses spectrally sampled radiation received from the spectral modulator and generates a corresponding output signal and at least one electronic processing device that controls the spatial and spectral modulators to cause spatial and spectral sampling to be performed, receives output signals and processes the output signals in accordance with performed spatial and spectral sampling to generate a hyperspectral image.

    Method for calibrating a spectroradiometer

    公开(公告)号:US10302489B2

    公开(公告)日:2019-05-28

    申请号:US15532222

    申请日:2015-12-01

    Abstract: The invention relates to a method for calibrating a spectroradiometer (1), comprising the following method steps: capture of light measurement data by the measurement of the radiation of at least one standard light source (4) using the spectroradiometer (1) that is to be calibrated; derivation of calibrated data from the light measurement data by the comparison of the captured light measurement data with known data of the standard light source (4); and calibration of the spectroradiometer (1) according to the calibration data. The aim of the invention is to provide a reliable and practical method for calibrating the spectroradiometer (1). In particular, the synchronism of spectroradiometers (1) situated in different locations (9, 10, 11) is to be produced simply and reliably. To achieve this aim, the validity, i.e. the usability, of the standard light source for the calibration is checked by a comparison of the light measurement data of the standard light source (4) with light measurement data of one or more additional standard light sources (4) of the same type, the validity of the standard light source (4) being established if the deviations of the light measurement data of the standard light sources (4) from one another lie below predefined limit values, and/or the standard light source (4) is measured using two or more standard spectroradiometers (1′) of the same type or of different types, the validity of the standard light source (4) being established if the deviations of the light measurement data from one another, said data being captured using the different standard spectroradiometers (1′), lie below predefined limit values.

    COLOR IMAGING BY DISCRETE NARROW-BAND SYNCHRONIZED ILLUMINATION

    公开(公告)号:US20190154569A1

    公开(公告)日:2019-05-23

    申请号:US16313167

    申请日:2017-06-27

    Inventor: Omri WARSHAVSKI

    Abstract: A color imaging system and method, the method comprising, for a plurality of predetermined wavelength bands of illumination, calculating weight coefficients representing the contribution of each of the wavelength bands to a specific color space, individually controlling illumination intervals of each of a plurality of illumination sources, wherein each of the illumination sources is configured to provide illumination via a waveguide in a different predetermined narrow band of wavelengths, controlling an image sensor to capture a set of monochromatic image frames synchronously with the illumination intervals, receiving a set of the captured monochromatic image frames, and generating color image data by calculating a combination of the set of image frames, each weighted by the corresponding coefficient.

    Reflection characteristic measurement system

    公开(公告)号:US10288564B2

    公开(公告)日:2019-05-14

    申请号:US15950902

    申请日:2018-04-11

    Abstract: A reflection characteristic measurement system includes: a hand-held reflection characteristic measurement apparatus including a light receiver that receives reflected light; and a guide member that supports the reflection characteristic measurement apparatus, wherein the guide member includes: a plate-shaped support part having a support surface to support the reflection characteristic measurement apparatus; and a white calibration plate applicable to white calibration of the reflection characteristic measurement apparatus, the support part includes: an elongated hole extending in one direction along the support surface; and a guide structure provided to guide the reflection characteristic measurement apparatus so as to enable the apparatus to move along the one direction, the light receiver is provided on the reflection characteristic measurement apparatus so as to move along a predetermined moving path, the moving path of the light receiver extends in the one direction, and the white calibration plate is provided on the moving path.

Patent Agency Ranking