Abstract:
An apparatus for use in parallel reaction of materials. The apparatus includes a base having a plurality of reaction wells, each of the reaction wells having a closed lower end and open upper end for receiving reactant materials. A cover is configured for sealing engagement with the base to form a housing enclosing the plurality of reaction wells and defining a common pressure chamber in communication with the reaction wells. The apparatus further includes an inlet port in communication with the pressure chamber for supplying pressurized fluid to the chamber to pressurize the reaction wells. The housing is configured to sustain a pressure substantially above atmospheric pressure.
Abstract:
The present invention discloses the process of supplying high pressure (e.g., 30 atmospheres) CO that has been preheated (e.g., to about 1000° C.) and a catalyst precursor gas (e.g., Fe(CO)5) in CO that is kept below the catalyst precursor decomposition temperature to a mixing zone. In this mixing zone, the catalyst precursor is rapidly heated to a temperature that results in (1) precursor decomposition, (2) formation of active catalyst metal atom clusters of the appropriate size, and (3) favorable growth of SWNTs on the catalyst clusters. Preferably a catalyst cluster nucleation agency is employed to enable rapid reaction of the catalyst precursor gas to form many small, active catalyst particles instead of a few large, inactive ones. Such nucleation agencies can include auxiliary metal precursors that cluster more rapidly than the primary catalyst, or through provision of additional energy inputs (e.g., from a pulsed or CW laser) directed precisely at the region where cluster formation is desired. Under these conditions SWNTs nucleate and grow according to the Boudouard reaction. The SWNTs thus formed may be recovered directly or passed through a growth and annealing zone maintained at an elevated temperature (e.g., 1000° C.) in which tubes may continue to grow and coalesce into ropes.
Abstract:
An apparatus and method for synthesis and screening of materials are disclosed. According to one aspect of the present invention, a parallel batch reactor for effecting chemical reactions includes a pressure chamber, an inlet port, two or more reaction vessels within the pressure chamber, and a reaction vessel cover. The inlet port is in fluid communication with the pressure chamber, and pressurizes the pressure chamber from an external pressure source. Each of the two or more reaction vessels are in isolatable fluid communication with the pressure chamber such that during a first pressurizing stage of operation, each of the two or more reaction vessels can be simultaneously pressurized through common fluid communication with the pressure chamber. In addition, during at least a second reaction stage of operation, each of the two or more pressurized reaction vessels can be isolated from each other by positioning the reaction vessel cover appropriately.
Abstract:
A process for the production of melamine by pyrolysis of urea in a high-pressure reactor having a vertical central pipe is provided. The melamine flows upwards into the reactor from below, mixes in the lower part of the reactor with a urea melt, and optionally NH3, introduced into the reactor from below, and emerges from the central pipe in the upper part of the central pipe. Part of the melamine formed flows downward in the annular space between the central pipe and reactor wall, and the remainder is expelled for further work-up. The off-gases are removed at the top of the reactor. A reactor for carrying out the process is also provided.
Abstract:
The invention relates to a multi-autoclave and details of its design, a method for automated synthesis of zeolites in the multi-autoclave, and furthermore, to applications of the multi-autoclave for an automated synthesis which is optimized simultaneously with regard to several synthesis parameters in the synthesis of zeolites. The multi-autoclave consists typically of a pressure vessel/autoclave having from 10 to 10,000 small, separated chambers lined with an inert material, with each chamber typically having a volume of 0.2-2 ml. The chambers preferably are formed as through-going perforations in a central block and the perforations are sealed by balls, septa, stoppers or such which are placed at the bottom and top of each through-going perforation. Metal plates are placed over and under the central block so that a closing mechanism is pressed against the edges of the perforations with sufficient load to enable the chambers to be filled with aqueous mixtures and to be heated to 200° C. without the occurrence of leakage. Top and bottom plates and closing mechanisms can be integrated so that all the perforations are sealed simultaneously when these are placed at the top and bottom sides of the central block.
Abstract:
The present invention discloses the process of supplying high pressure (e.g., 30 atmospheres) CO that has been preheated (e.g., to about 1000null C.) and a catalyst precursor gas (e.g., Fe(CO)5) in CO that is kept below the catalyst precursor decomposition temperature to a mixing zone. In this mixing zone, the catalyst precursor is rapidly heated to a temperature that results in (1) precursor decomposition, (2) formation of active catalyst metal atom clusters of the appropriate size, and (3) favorable growth of SWNTs on the catalyst clusters. Preferably a catalyst cluster nucleation agency is employed to enable rapid reaction of the catalyst precursor gas to form many small, active catalyst particles instead of a few large, inactive ones. Such nucleation agencies can include auxiliary metal precursors that cluster more rapidly than the primary catalyst, or through provision of additional energy inputs (e.g., from a pulsed or CW laser) directed precisely at the region where cluster formation is desired. Under these conditions SWNTs nucleate and grow according to the Boudouard reaction. The SWNTs thus formed may be recovered directly or passed through a growth and annealing zone maintained at an elevated temperature (e.g., 1000null C.) in which tubes may continue to grow and coalesce into ropes.
Abstract:
The present invention discloses the process of supplying high pressure (e.g., 30 atmospheres) CO that has been preheated (e.g., to about 1000° C.) and a catalyst precursor gas (e.g., Fe(CO)5) in CO that is kept below the catalyst precursor decomposition temperature to a mixing zone. In this mixing zone, the catalyst precursor is rapidly heated to a temperature that results in (1) precursor decomposition, (2) formation of active catalyst metal atom clusters of the appropriate size, and (3) favorable growth of SWNTs on the catalyst clusters. Preferably a catalyst cluster nucleation agency is employed to enable rapid reaction of the catalyst precursor gas to form many small, active catalyst particles instead of a few large, inactive ones. Such nucleation agencies can include auxiliary metal precursors that cluster more rapidly than the primary catalyst, or through provision of additional energy inputs (e.g., from a pulsed or CW laser) directed precisely at the region where cluster formation is desired. Under these conditions SWNTs nucleate and grow according to the Boudouard reaction. The SWNTs thus formed may be recovered directly or passed through a growth and annealing zone maintained at an elevated temperature (e.g., 1000° C.) in which tubes may continue to grow and coalesce into ropes.
Abstract:
The invention relates to the field of powder metallurgy, in particular to the design of autoclaves for manufacturing of composite materials by treatment of workpieces of discrete materials, mostly powders, at high pressures and temperatures. The autoclave module contains the vessel that includes hermetically sealed movable end closures, the rams restricting the axial shift of these closures, and the pressure yoke with columns and winding made of high-strength steel wire, whereby the pressure yoke is made in the form of three oval yoke sectionsnulltwo lateral sections encompassing the rams, and one central section encompassing the rams and the vessel with closures, all of them equidistant from each other on the ram's length, whereby each of the lateral oval sections is made in such a way as to allow opposite shift while the central section is made in such a way as to allow shift in the direction which is perpendicular to the vessel's axis and parallel to the rams' axis, for a length ensuring free withdrawal of the rams and the end closures. The invention allows to reduce the metal consumption of the pressure module by a factor of 2 to 3 compared to the known analogs, and to enhance the reliability and the operational safety of the apparatus.
Abstract:
The invention relates to an installation for the preparation of urea from ammonia and carbon dioxide, the installation comprising two reactor sections in a vertically placed combined reactor and a high-pressure condenser section. The installation may comprise a vertically placed combined reactor, with the two reactor sections being separated by a high-pressure condenser section. In another embodiment the installation comprises a vertically placed combined reactor that comprises two reactor sections and a high-pressure condenser section placed outside the reactor. The invention also relates to a process for the preparation of urea in this installation. This involves feeding the gas stream leaving the stripper wholly or partly to the high-pressure condenser section of the installation. Preferably, a portion of the gas stream leaving the scrubber is fed to the second reactor section in the vertically placed combined reactor via an ammonia-driven ejector.
Abstract:
A method and an apparatus for preparing aluminum nitride are disclosed. The method includes the steps of (a) providing an aluminum container, (b) providing a reactant to be received in the aluminum container, and proceeding at least one step selected from a group consisting of step (b1), step (b2) and a combination thereof, (c) placing the aluminum container into a reactor with a specific pressure and introducing nitrogen gas into the reactor, and (d) heating the reactant at a specific temperature till igniting, thereby preparing the aluminum nitride. The step (b1) is placing a layer of an aluminum nitride powder between the reactant and the aluminum container, and the step (b2) is perpendicularly placing at least one aluminum pipe into the reactant.