Abstract:
Process for the preparation of urea from ammonia and carbon dioxide in a urea production process comprising, in a high-pressure synthesis section: a. a reactor, wherein ammonia and carbon dioxide react to form a urea-comprising synthesis solution; b. a stripper, wherein the urea-comprising synthesis solution is heated and stripped, optionally in counter-current with a stripping agent; c. a submerged condenser, wherein the gas leaving the top of the stripper is, at least partially, condensed to form a condensate solution and d. an ejector, in the line connecting the submerged condenser and the reactor, supporting the transport of the condensate solution from the submerged condenser to the reactor, wherein a gas stream leaving the top of the submerged condenser is controlled by one or more controlling elements.
Abstract:
Process for the production of urea from ammonia and carbon dioxide in a urea plant containing a high-pressure synthesis section comprising at least one reactor section, a stripper and a condenser wherein all the high-pressure equipment is placed in a low position, wherein the height of the high-pressure section is less than 35 m from ground level and at least one of the reactor sections comprises means for the separate distribution of ammonia in the bottom of the reactor section.
Abstract:
The invention relates to a method for urea production and to a urea production plant wherein ammonia emission in the final step of forming urea prills is reduced. In the method, the concentration of a urea solution is performed in at least three consecutive concentration steps and the residence time of urea melt leaving a last concentrator to the prilling tower is minimized. This can be achieved by placing the last concentrator in adjacency with a urea melt inlet of the prilling tower, such as above the prilling tower. In this way, the ammonia emission in the prilling tower can be reduced by as much as 50% compared to the conventional urea production plants. The invention further relates to a method for reducing ammonia emission in the prilling tower of an existing urea production plant.
Abstract:
Process for the preparation of granules from a liquid composition by spraying the liquid composition in the granulation zone of a granulating device onto or over solid particles present in the granulation zone that are being kept in motion, as a result of which these particles grow, and withdrawing a stream of particles from the granulation zone, yielding a stream of particles of the desired size, with a part of the air flow leaving the granulating device during granulation being returned to the granulating device. In this way only a small part of the air flow needs to be purified of the starting materials.
Abstract:
Disclosed is a method for the production of urea allowing a substantial reduction, even down to zero, of the continuous emission of ammonia conventionally resulting from such a process. According to a preferred embodiment of the invention, the urea-forming reaction from carbon dioxide and ammonia is conducted in a synthesis section that does not require passivation by oxygen. As a result of the absence of oxygen, a hydrogen-rich gas stream results from the synthesis section, that can be used as a fuel in an incinerator. In the incinerator, ammonia-comprising gas streams from the urea production process are combusted.
Abstract:
Process for increasing the capacity of an existing urea plant comprising a high-pressure urea synthesis section and one or more recovery sections, wherein next to the existing urea plant a urea production unit, comprising a high-pressure urea synthesis section and a medium-pressure recovery section, is installed, wherein a urea-containing stream is produced from ammonia and carbon dioxide and the urea-containing stream is sent to the existing urea plant where the urea-containing stream is further purified in the low-pressure recovery section.
Abstract:
An apparatus used for the decomposition of non-converted ammonium carbamate in a supplied urea solution in a urea stripping synthesis section. The apparatus comprises a number of heat exchanger tubes between a top chamber and a bottom chamber, a liquid distributor mounted on each heat exchanger tube and a gas/liquid separator together with a perforated basket at the centre of the top chamber.
Abstract:
The invention relates to a process for separating NH3 from a mixture containing NH3, CO2 and H2O which comprises an NH3 rectification step carried out in a NH3 separation device to which one or more streams containing NH3, CO2 and H2O including the mixture, are supplied, with a stream consisting substantially of gaseous NH3 being formed in the NH3 separation device, separated from the mixture and discharged. In the process according to the invention a condensation step is carried out on at least one of the stream consisting substantially of gaseous NH3 or the one or more streams containing NH3, CO2 and H2O supplied to the NH3 separation device, in which at least a part of the existing CO2 is converted to a liquid phase.
Abstract:
The invention relates to an installation for the preparation of urea from ammonia and carbon dioxide, the installation comprising two reactor sections in a vertically placed combined reactor and a high-pressure condenser section. The installation may comprise a vertically placed combined reactor, with the two reactor sections being separated by a high-pressure condenser section. In another embodiment the installation comprises a vertically placed combined reactor that comprises two reactor sections and a high-pressure condenser section placed outside the reactor. The invention also relates to a process for the preparation of urea in this installation. This involves feeding the gas stream leaving the stripper wholly or partly to the high-pressure condenser section of the installation. Preferably, a portion of the gas stream leaving the scrubber is fed to the second reactor section in the vertically placed combined reactor via an ammonia-driven ejector.
Abstract:
Process for the production of urea from ammonia and carbon dioxide in a urea plant containing a high-pressure synthesis section comprising at least one reactor section, a stripper and a condenser wherein all the high-pressure equipment is placed in a low position, wherein the height of the high-pressure section is less than 35 m from ground level and at least one of the reactor sections comprises means for the separate distribution of ammonia in the bottom of the reactor section.