Abstract:
An ozone generator module of the electric discharge field type is provided having at least one cell comprising an assembly of three concentric tubular members, the inner and outer tubular members being electrodes separated by a tubular dielectric member spaced from one of the electrodes a distance sufficient to define a high density electric discharge zone between them, the cell or cells being disposed within a liquid container. Surprisingly good results are obtained by employing a combination of three method steps; - limiting variation in the cross sectional dimension of the field to within a very small range of tolerance; controlling the temperature of the electrodes; and limiting the density of the field by regulating the voltage across the field and the frequency employed.
Abstract:
An ozone injector device comprising a housing, a corona tube disposed within the housing and configured to generate ozone, a check-valve having a first end removably coupled to the water passageway and a second end configured to receive ozone, the second end having a cavity with a movable float contained therein, an ozone inlet fitting removably coupled to the second end of the check-valve, the ozone inlet being in fluid communication with the corona tube via a corona discharge tube such that ozone entering the water passageway through the ozone inlet must pass through the check valve, and a spring-loaded clearing piston positioned to move into and out of the water passageway directly opposite the ozone inlet, the clearing piston being biased upwards, and configured to prevent flow of ozone into the water passageway.
Abstract:
An ozone generator of a gas blow-through type, especially to produce a gas mixture of ozone/air or ozone/oxygen. An ozone producing structural unit in the path of the blown air or oxygen is used as ozone source. The ozone producing structural unit is operated on the principle of alternating current auxiliary electrode cold arc discharge with its capacity increased by limited arc discharge, with an alternating voltage voltage source. This solution does not result in high-temperature arc discharges, thus the fire hazard may be eliminated, and at the same time the device is capable of producing extremely large quantities of ozone. The ozone producing structural unit of the ozone generator is placed in one or more insulating housings/air ducts, placed in a direction parallel to or coaxial to the air blowing direction. Further details of the apparatus are disclosed herein.
Abstract:
An ozone generator and an internal combustion engine with the ozone generator that can raise ozone additive rate of whole intake air, while suppressing pressure loss in the intake pipe from increasing. The internal combustion engine with an ozone generator includes a tubular intake pipe, through an inner region of which air flows, an ozone generator having an electrode plate that makes ozone and is disposed in the inner region or in the intake pipe, and a limiter that limits the flow of air in the inner region of the intake pipe; the electrode plate has a planar dielectric and high-voltage-side and low-voltage-side electrodes adhered and fixed to the dielectric and is formed in a shape of a plate extending in a direction in which air flows.
Abstract:
An ozone supply device includes an ozonizer, a blower and a housing while the housing serves as an intake duct member. The ozonizer includes electrodes that generate ozone through electric discharge. The blower includes a suction inlet, through which air is drawn, and a discharge outlet, through which the air drawn from the suction inlet is discharged. The blower supplies the air discharged from the discharge outlet to the electrodes and blows the ozone generated through the electric discharge to an exhaust passage. The housing forms a suction air passage that guides the air to the suction inlet. At least a portion of the ozonizer is placed in the suction air passage.
Abstract:
A dielectric assembly for generating ozone includes a positive electrode, a negative electrode, a dielectric for generating the ozone, and a knob adapted to extend outside of a housing into which the dielectric assembly is to be placed. A system is also provided for sanitizing and deodorizing water, food, surfaces and air including a microbiological reduction filter device having an input connected to a water supply, a venturi injector disposed within a housing and connected to an output of the microbiological reduction filter device which generates ozone and mixes the generated ozone with the water, and an electrode assembly comprising a plurality of electrodes, a dielectric for generating the ozone, and a knob extending outside of the housing. The dielectric in a first embodiment and the entire dielectric assembly in a second embodiment can be removed from the housing and replaced in its entirety by the knob.
Abstract:
An ozone generator includes one or more electrode pairs each containing two electrodes arranged at a distance of a predetermined gap length and a power source for applying an alternating-current voltage between the two electrodes. In the ozone generator, ozone is produced when a source gas flows at least between the two electrodes and a discharge is generated between the two electrodes. The ozone generator has a discharge space formed between the two electrodes, and the ozone generator satisfies the condition of 0.5
Abstract:
A method of replacing an electrode assembly of an ozone generator includes removing an upper closure plate of the ozone generator, removing a contact plate, lifting an individual electrode assembly to be replaced from its associated dielectric tube, and sliding a replacement electrode assembly into place. A method of replacing a dielectric tube of an ozone generator includes removing the upper closure plate, contact plate, individual electrode assembly to be replaced from its associated dielectric tube, removing a suspension means and its associated suspended dielectric tube from its respective lower seal plate aperture, sliding a replacement dielectric tube into the removed suspension means, sliding the removed suspension means and replacement dielectric tube into its respective lower seal plate aperture, sliding the lifted electrode assembly into the replaced dielectric tube, and sliding the electrode assembly with its replaced dielectric tube suspended from its associated suspension means into place.
Abstract:
A portable, personal advanced-oxidation water treatment system based on ozone and a catalyst such as titanium dioxide that can cycle and purify water to make it potable by removing organic contaminants. The unit can be used for long periods of time without having to replenish the active portions. The unit can be carried in a backpack or in a vehicle. Fresh water is typically loaded into the unit, and the unit is cycled until the water is pure enough to drink. A battery is used to produce ozone and to cycle the water through a reaction vessel and can optionally be charged with a small solar panel The unit can also be powered directly from a vehicle.
Abstract:
An electrode structural body includes a first electrode and a second electrode, and further includes a first retainer and a second retainer for fixing the first electrode and the second electrode. The first electrode and the second electrode are separated from each other, their axial directions being parallel to each other. The first electrode contains a first insulating body having a first hollow portion and a first conducting body located in the first hollow portion. The second electrode contains a second insulating body having a second hollow portion and a second conducting body located in the second hollow portion. At least in the first electrode, at least one end surface of the first conducting body is positioned inside the first hollow portion at a distance from one end surface of the first insulating body.