Abstract:
A reaction product of: (a)) at least one cinnamyl alcohol or ester of cinnamic acid; (b) at least one unsaturated polyester resin, at least one vinyl ester resin, or a mixture of an unsaturated polyester resin and a vinyl ester resin; (c) at least one (meth)acrylated vegetable oil; and (d) a free radical initiator system.
Abstract:
In accordance with some embodiments of the present invention, a composite material is prepared by blending a flame retardant modified cellulosic nanomaterial (FR-CN) filler into a polymer, wherein the FR-CN filler comprises a cellulosic nanomaterial (e.g., cellulose nanocrystals (CNCs) and/or cellulose nanofibrils (CNFs)) having a surface functionalized to incorporate a phosphorus-containing moiety. In some embodiments, the FR-CN filler is prepared by reacting hydroxyl groups on the surface of the cellulosic nanomaterial and a halogenated phosphorous-containing monomer (e.g., diphenyl phosphoryl chloride). In some embodiments, the surface of the cellulosic nanomaterial is further functionalized to incorporate an orthogonal functionality selected to enhance the compatibility of the FR-CN filler with the polymer by reacting hydroxyl groups on the surface of the cellulosic nanomaterial and a monomer (e.g., epichlorohydrin when the polymer is an epoxy-based polymer).
Abstract:
A dispersion having a cationic zeta potential for use as a base coating on a sheet of paper or paperboard as a primer for a functional barrier top coating, wherein the composition comprises an anionic pigment containing mixture comprising one or more anionic pigments in an amount of at least about 20% dry weight of the mixture, and one or more polyamine-epihalohydrin cationic wet strength resin.
Abstract:
A mixture of a cellulose derivative and a liquid diluent is prepared which comprises at least 5 weight percent of the cellulose derivative, based on the total weight of the cellulose derivative and the liquid diluent. The mixing operating causes air to be entrapped in the mixture. The time for at least partially removing entrapped air is reduced by providing a cellulose derivative having a specific surface area of less than 0.20 m2/g measured by BET method for preparing the mixture.
Abstract:
The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
Abstract:
A particulate cellulose derivative is obtained in a process of grinding and drying a moist cellulose derivative which comprises the steps of A) providing a cellulose derivative having a moisture content of from 60 to 95 percent, based on the total weight of the moist cellulose derivative, B) grinding and partially drying the moist cellulose derivative in a gas-swept impact mill; C) contacting the ground and partially dried cellulose derivative with an additional amount of a drying gas outside the gas-swept impact mill; and D) subjecting the cellulose derivative to partial depolymerization after having contacted the cellulose derivative with a drying gas in step C). The obtained particulate cellulose derivative has a high untapped bulk density, a good flowability and a low color intensity.
Abstract:
Fluorescing gel formulations are disclosed for monitoring cleaning of a surface. The fluorescing gel formulations are stable, fluoresce under UV light, and do not leave a mark after drying and removal. The compositions include an oppositely charged complexing agent which is used in combination with an anionic or cationic optical brightener. In some embodiments, the compositions include a cationic optical brightener with no complexing agent.
Abstract:
A dry tack denture adhesive hydrogel comprising a mixed salt of a copolymer of alkyl vinyl ether and maleic anhydride or maleic acid, a hygroscopic nonionic polymer, and water is provided. A method for preparation of the denture adhesive hydrogel is also disclosed.
Abstract:
Pharmaceutical compositions of a low-solubility drug and lower alkanoate-, phthalate- and trimellitate esters of hydroxypropyl methyl cellulose and lower alkanoate- and succinate esters of cellulose and methyl cellulose are disclosed that provide enhanced concentrations of the drug in a use environment.
Abstract:
An object of the present invention is to provide a hydrophilic cellulose derivative fine particle having a small particle size, a dispersion liquid thereof and a dispersion body thereof; and provide a diagnostic reagent composed of the hydrophilic particle, which is excellent in storage stability and does not require excess components, such as an emulsifier or surfactant. The cellulose derivative fine particle of the present invention is a cellulose derivative fine particle comprising a cellulose derivative with a part of hydroxyl groups of cellulose being substituted with a substituent, wherein the average particle diameter is from 9 to 1,000 nm; and the diagnostic reagent of the present invention is a diagnostic reagent obtained by loading a substance differentially interacting with a test object substance on the above-described cellulose derivative fine particle.