Abstract:
The present invention transforms a device-dependent color value in a device-dependent color space of a display device to a device-independent color value in a device-independent color space. A first color value is determined in a perceptually linear color space by applying a matrix model to the device-dependent color value, the matrix model applying a tone curve correction and a tristimulus matrix to the device-dependent color value. A difference value is then determined in the perceptually linear color space, wherein the difference value is determined by applying a difference model to the device-dependent color value, and wherein the difference model models deviation of the matrix model from actual measurements of the display device. Next, the difference value and the first color value are added and the sum is transformed to the device-independent color space. Because the first value based on the matrix model is added to a difference value which accounts for deviation of the matrix model, the present invention can account for the channel interdependency prevalent in DLP display devices.
Abstract:
A method of producing a finish for a selected wood substrate, wherein the finish provides the selected wood substrate with a color that matches the color of a target object. In accordance with the method, calculations are performed to determine the quantities of at least one group of colorants required to produce a semitransparent wood stain from a vehicle, wherein when the semitransparent wood stain is applied to the selected wood substrate, the selected wood substrate will have a color that matches the target object. The calculations are performed using reflectance measurements of the target object obtained using a spectrophotometer and previously obtained spectral data of the colorants as applied to at least one type of wood. The colorants used to form the semitransparent wood stain do not include a white colorant.
Abstract:
A system is provided that includes a first computer that can communicate with a second computer. The second computer sends information to the first computer that includes a desired ink color and optionally includes information of other desired ink properties. The first computer includes a database of data for predicting color data of ink formulations using a selected ink base color set, a software program for selecting an ink formulation based on data for a desired ink, and a software program for sending information to the second computer to display the color of the selected ink formulation on a color monitor connected to the second computer. The ink base color set can be selected to provide other desired properties for the ink, such as low cost, light fastness, or chemical resistance.
Abstract:
The present invention provides a simple interactive device intended to be used by the customer for acquiring an image of the customer, interactively allowing the customer to try on virtual shades of lipstick, makeup, color contacts, hair color, and/or apparel at the same time to change their appearance. The present invention takes into account the deviations due to the input devices and the output devices thereby resulting in laboratory quality color accuracy and very realistic images. Since it is so accurate, customers may rely on the present invention instead of “trying on” the products. This allows a customer to view many different colors and color schemes in a fraction of the time, while freeing up store employees. The present invention may also display several images simultaneously to allow a customer to efficiently determine the best color scheme or look requiring minimal employee input.
Abstract:
A method for obtaining a target color measurement using an electronic image capturing device comprising the steps of: (1) determining one or more of a field correction array, level correction vectors, a color correction matrix, and a calibration correction and; (2) adjusting a target color measurement based upon one or more of a field correction array, level correction vector, a color correction matrix, and a calibration correction to obtain a corrected color target measurement.
Abstract:
An apparatus for displaying paint colors using device-dependent colors is disclosed. The apparatus has a wall portion sized and dimensioned to be substantially similar to a full size wall, and the device-dependent colors have color coordinates that are substantially similar to the color coordinates of paint colors. Lights displaying the device-dependent colors are diffused before illuminating the wall portion. A method for selecting paints using device-dependent colors is also disclosed.
Abstract:
A color luminance meter 1 is provided with a polychrometer 4 as a spectral optical system including a light receiving sensor array 43, a signal processing circuit 5 and an operation control unit 6. The operation control unit 6 carries out calculations to obtain characteristics of a measurement light based on a specified spectral responsitivity, using light reception signals and specified weighting coefficients. The spectral responsitivities of light receiving sensors constructing the light receiving sensor array 43 are selected such that B≧5 nm and A/B lies within a range of 1.5 to 4.0 when A, B denote the half power band width of the spectral responsitivities and a center wavelength interval of the spectral responsitivities. Accordingly, there can be provided a light measuring apparatus capable of maximally suppressing errors to highly precisely measure color luminance values and the like even in a measurement of a light lying in a narrow band such as a monochromatic light.
Abstract:
What is disclosed is a method for maintaining consistent color output across printers even when the inline sensors have differences in accuracy due to various technical and environmental factors. A spectrophotometer is used to measure the color quality of printed references. Adjustments are then iteratively made until reference charts of desired color quality are obtained. The printed reference allows one to achieve relatively high system performance by removing sensor inaccuracies. Using the printed reference measured by the inline sensor control systems of each machine are calibrated. At customer sites and at suitable intervals, a reference document can be read using the inline sensor on a reference machine and any differences from expected values can be calibrated out. The present method is also applicable to other color management functions such as memory color and automatic profile generations using inline/offline sensors and can be used for determining reference values while calibrating control systems of printers over a wide range of applications.
Abstract:
The invention relates to techniques for light leakage compensation in a multi-channel display device. The invention may be particularly useful in calculating single-channel emission spectra for liquid crystal displays (LCD). In order to accurately model and calibrate a display device, an accurate spectral output estimate for each of the individual color channels is needed. The invention provides techniques to compensate for light leakage from adjacent color channels that cause hue shifts in the images reconstructed by the display device. In accordance with the invention, a light leakage emission spectrum can be determined for each color channel of a display based on a measured emission spectrum for the display at a minimum level and assumed emission spectra for light sources in the display. A single-channel emission spectrum is the difference between a cumulative color channel emission spectrum measurement and the light leakage spectra of adjacent color channels.
Abstract:
A method of verifying the color and tinting strength of a manufactured batch of a semi-transparent wood stain. In accordance with the method, a standard batch of the wood stain is formed and then mixed with a specified amount of a white colorant to form a standard measurement batch. A test sample of the manufactured batch is obtained and is also mixed with a specified amount of the white colorant to form a test measurement sample. Layers of the standard measurement batch and the test measurement sample are formed on the substrates and complete hide obtained. Reflectance measurements of the layers are made using a spectrophotometer. The reflectance measurements are used to determine if the color and the tinting strength of the manufactured batch is within an acceptable deviation range of the color and tinting strength of the standard batch. This allows for objective color difference and tint strength difference calculations, and adjustments can be made therefrom, therefore eliminating the past visual trial and error methods.