Abstract:
Systems and methods for remote controlling of vehicles are described. Systems and methods may include a plug and play device. Systems may include a receiver; a programmable microprocessor in communication with the receiver; and a switch in communication with the programmable microprocessor. The switch may operate one or more systems of the vehicle. The receiver may send a signal to the preprogrammed microprocessor upon receiving an incoming communication from a network. The signal may include a unique user identifier, and the preprogrammed microprocessor may read and process the unique user identifier to control one or more vehicle systems.
Abstract:
A control method includes: displaying candidate information on a user interface region of a display unit in an information terminal; obtaining, via a network, an operation history of each of apparatuses which indicates an operation performed on the corresponding apparatus; displaying, on the user interface region, a dialog for prompting a user to confirm whether or not to perform predetermined control on a target apparatus which is extracted according to at least one of (a) selected apparatus information (b) selected place information and (c) selected operator information, and has an operation history that satisfies a predetermined condition; generating a control signal for performing the predetermined control on the target apparatus, when the user confirms in the dialog that the predetermined control is to be performed on the target apparatus; and transmitting the control signal to the target apparatus via the network.
Abstract:
A communication system and method are provided for remotely reproducing a touch pattern or gesture as a vibrotactile output. At a touch screen, a first user device receives a touch pattern by a first user, characterizes the touch pattern as a touch pattern data based upon time and intensity of touch at a plurality of array points of the touch screen, and communicates the touch pattern data to a network. A tactile array of micro-vibratory devices is attached to a garment and worn by a second user. The touch pattern data is wirelessly received from the first user device via the network. Vibration of selected micro-vibratory devices of the tactile array is modulated in timing and intensity in response to the touch pattern data to reproduce the touch pattern.
Abstract:
An exemplary embodiment of the present invention provides a site controller for use in a communication system. The site controller can be configured to receive original data messages and repeated data messages, identify remote devices in associated with sensor data signals of received data messages and repeated data messages, and provide information related to the sensor data signals to a wide area network for access by a first host computer.
Abstract:
Methods and systems are provided for preventing interference from simultaneous data transmissions in a remote control system. A controlled terminal is typically configured to receive control data from a controlling terminal and to transmit feedback data to a monitoring terminal. To prevent interference caused by the simultaneous transmissions of control data and feedback data. The controlling terminal can transmit the control data to the monitoring terminal, which then transmits the control data to the controlled terminal. Such transmission of the control data may be carried out in a way that does not interfere with the transmission of the feedback data.
Abstract:
A control hub and method of operating the control hub are presented. The hub/method receives instructions remotely, and for each instruction, identifies one of a plurality of appliances as an intended recipient of the instruction, translates the instruction into a format readable to the one of the plurality of appliances, and sends the translated instruction to the one of the plurality of appliances identified as the intended recipient of the instruction via one of one or more communication mechanisms of the control hub.
Abstract:
A network of devices with remote control includes a network interconnecting two or more networked devices and a wireless remote control unit for communicating with one or more of the networked devices. The remote control unit stores an interface for one or more of the networked devices so that the networked devices can be controlled with the remote control unit.
Abstract:
A system and method is provided for remotely controlling and interacting with a multimedia device using a mobile phone. This is accomplished by utilizing cell and mobile phones capable of establishing persistent Internet connections. A software application is provided for the mobile phone that receives inputs entered by a user on the mobile phone's keypad and translates the inputs into commands that are recognized by a multimedia device. For example, the multimedia device may be a television, set top box, or a digital video recorder such as a Tivo or ReplayTV. The software application transmits the data input by the user to the device, either directly, or through at least one central server. Mapping of the commands entered on the mobile phone into commands recognized by the remote device may occur on the phone, at a central server, or at the device itself.
Abstract:
A sensor-monitoring application can execute on a mobile device, tablet computer, or other portable device, and facilitates controlling sensors and navigating through sensor data either directly or via a sensor-managing service. A user can monitor feedback from a variety of sensors, such as a motion sensor, a temperature sensor, a door sensor, an electrical sensor. The user may interact with the application's user interface to control and synchronize various sensors, controllers, power switches wirelessly. The user can also control devices, such as by sending a command to a device via an electronic port, or by enabling, disabling, or adjusting a power output from a power outlet that provides power to a device (e.g., to a light fixture).
Abstract:
According to one general aspect, a method according to the present application includes remotely controlling wirelessly networked devices via a mobile unit. The method includes receiving, at a mobile unit and from a user, an input, analyzing the input to identify a networked device associated with the input, determining whether the networked device is presently accessible via a wireless network; determining whether to establish a connection with the networked device based on whether the networked device is determined to be presently accessible via the wireless network. The method also includes establishing a connection with the networked device if it is determined that the networked device is accessible via the wireless network and enabling the user to interact with the networked device through the mobile unit to remotely control the networked device.