Abstract:
A composition includes a bismaleimide triazine (BT) compound with a nanoclay composited therewith. A mounting substrate includes polymer compound with a nanoclay composited therewith to form a core for the mounting substrate. A process includes melt blending a polymer such as BT with a nanoclay and forming a core. A process includes dissolving a monomer such as BT with a nanoclay and forming a core. A system includes a nanoclay dispersed in a polymer matrix and a microelectronic device mounted on the mounting substrate that includes the nanoclay dispersed in the polymer matrix.
Abstract:
There is prepared an insulation layer generation member having a support film and a semi-cured insulation layer provided on a surface of the support film. Subsequently, the insulation layer generation member is affixed to a pad such that the pad contacts the semi-cured insulation layer. The semi-cured insulation layer is cured, to thus generate an insulation layer. Subsequently, the insulation layer is exposed to laser by way of the support film, thereby opening an opening in the insulation layer.
Abstract:
The present invention relates to a printed circuit board. A heat radiation coating material is applied to a portion of a circuit layer formed on an outermost portion of the printed circuit board, thereby making it possible to improve heat radiation performance of the printed circuit board. The heat radiation coating material also serves as a solder resist, thereby making it possible to insulate and protect the printed circuit board without a separate solder resist.
Abstract:
A structure for which the electrical reliability is improved is provided. A structure in accordance with one embodiment includes an inorganic insulating layer including amorphous silicon oxide and having an elastic modulus which is 45 GPa or less. A method for manufacturing a structure in accordance with one embodiment includes applying an inorganic insulating sol including inorganic insulating particles composed of amorphous silicon oxide, and forming an inorganic insulating layer including amorphous silicon oxide and having an elastic modulus which is 45 GPa or less by heating the inorganic insulating particles at a temperature lower than a crystallization onset temperature of silicon oxide to each other.
Abstract:
Provided is a curable resin composition which exhibits improved developability even in through holes and can suppress the generation of development residue and which can yield a cured product with excellent heat resistance and hardness. A curable resin composition which comprises a carboxyl-containing resin, a photopolymerization initiator, and barium sulfate that has been pretreated with a dispersant having an acid group and/or a dispersant having a block copolymer structure, a graft polymer structure, and/or a star polymer structure.
Abstract:
A multi-layer printed-wiring-board is used in densely packaging electronic components such as semiconductors having improved function, and a production method therefor, and more specifically it achieves a multi-layer printed-wiring-board having excellent copper-foil-peel-strength and high connection-reliability in which occurrence of structural defects such as delamination (interlayer peeling) is prevented, and a production method therefor. Because of thinning of the printed-wiring-board or diversification of insulating layers constituting the printed-wiring-board, peeling such as delamination may occur between the insulating layers or in an interface between the insulating layer and the plated conductor. By providing pores in substantially the same plane as wiring patterns in the printed-wiring-board including insulating layers, wiring pattern layers made of copper foil alternately laminated on the insulating layers, and pores provided between the wiring patterns, a printed-wiring-board having high connection reliability free from delamination or cracks during heating or in heat cycle conditions.
Abstract:
There is prepared an insulation layer generation member having a support film and a semi-cured insulation layer provided on a surface of the support film. Subsequently, the insulation layer generation member is affixed to a pad such that the pad contacts the semi-cured insulation layer. The semi-cured insulation layer is cured, to thus generate an insulation layer. Subsequently, the insulation layer is exposed to laser by way of the support film, thereby opening an opening in the insulation layer.
Abstract:
The object of the present invention is to provide a metal layer with an insulating layer which is uniform and thin and can be produced in low cost. To achieve the object, a laminate composed of a ceramic insulating layer and a metal layer characterized in that the ceramic insulating layer has a binder provided among ceramic particles constituting a ceramic particle film formed by electrophoretic deposition of the ceramic particles is employed. The laminate can be suitably used as a base material for production of various types of electronic devices, the circuit formation of printed wiring boards, semiconductor circuits and circuits including semiconductor circuits, and capacitors utilizing dielectric performance of the ceramic insulating layer.
Abstract:
A circuit board comprises a substrate; a through hole penetrating the substrate along with a direction of a thickness thereof; and a through hole conductor covering an inner wall of the through hole. The substrate comprises a first fiber layer, a second fiber layer, and a resin layer arranged between the first fiber layer and the second fiber layer. Each of the first fiber layer and the second fiber layer has a plurality of fibers and a resin arranged among the plurality of the fibers. The resin layer contains a resin and doesn't contain a fiber. The inner wall of the through hole, in a cross-section view along with the direction of the thickness of the substrate, comprises a curved depression in the resin layer.
Abstract:
A resin composition includes solid brominated epoxy resin of 20-70 wt %, a hardener of 1-10 wt %, a promoter of 0.1-10 wt %, inorganic powder of 0.01-20 wt %, high thermal conductivity powder of 5-85 wt % closest packed by Horsfield packing model and a processing aid of 0-10 wt %; the resin composition possesses high glass transition temperature ranged from 169° C. to 235° C. measured by DSC, high thermal conductivity ranged from 5.7 W/m·K to 14.2 W/m·K, and excellent heat resistance as well as flame retardancy. The resin composition, which acts as a dielectric layer of a printed circuit board so as to endow the PCB with high thermal conductivity, is a high thermal conductivity prepreg formed by retting or a high thermal conductivity coating formed by coating. As a result, prompt dissipation of heat generated by electronic components on the PCB is achievable so that service life and stability of the electronic components are improved.