Abstract:
Disclosed is an insulating resin sheet laminate (an insulating resin sheet with a film or a metal foil) including an insulating resin layer with a uniform thickness that is formed without repulsion or unevenness in a process of forming the insulating resin layer on a film or a metal foil, and a multi-layer printed circuit board that includes the insulating resin sheet laminate and possesses high insulating reliability. The present invention provides an insulating resin sheet laminate (an insulating resin sheet with a film or a metal foil) obtained by forming an insulating resin layer made of a resin composition on a film or a metal foil, and the resin composition includes an acrylic surfactant.
Abstract:
A polyimide precursor and its composition as well as a polyimide laminate are provided. The polyimide precursor and its composition are prepared using a diamine monomer and a dianhydride monomer in a specific composition proportion. The composition is coated on a copper foil and then cured to provide a polyimide laminate with a desired Coefficient of Thermal Expansion (CTE) and exhibiting desired properties, such as film flatness, dimensional stability, peeling strength, tensile strength, and elongation.
Abstract:
The invention aims to provide a resin primer which can stick an insulator layer to a conductor foil whereof the surface is not much roughened with sufficient adhesive force, a conductor foil with resin, a laminated sheet and a method of manufacturing same. The resin primer of the invention comprises a resin having film-forming ability and a breaking energy of 0.15 J or more. The conductor foil with resin of the invention comprises a resin layer comprising a conductor foil and the aforesaid resin primer. Further, the laminated sheet of the invention comprises the conductor foil, an insulating layer disposed facing the conductor foil, and a resin layer comprising the aforesaid resin primer disposed between the conductor foil and insulating layer so that it is in contact therewith. This laminated sheet can be manufactured by heating and pressurizing a laminate comprising the aforesaid conductor foil with resin, and a prepreg laminated on this resin layer.
Abstract:
A conductive portion is formed in a hole formed in a material sheet. A metal foil is placed on a surface of the material sheet to provide a laminated sheet. The laminated sheet is heated and pressed to provide a circuit-forming board. The metal foil includes a pressure absorption portion and a hard portion adjacent to the pressure absorption portion. The pressure absorption portion has a thickness changing according to a pressure applied thereto. The circuit-forming board provided by this method provides a high-density circuit board of high quality having reliable electrical connection.
Abstract:
The present invention provides a method for producing a copper-clad laminate, the method comprising the step of placing at least one copper foil onto a resin layer containing a liquid crystalline polymer so that the resin layer adheres to a surface of the copper foil, wherein the surface of the copper foil has 0.4 or more of a ratio of nickel concentration to copper concentration and has substantially no silicon detected when measured with X-ray photoelectron spectroscopy. The copper-clad laminate can sufficiently maintain excellent adhesion between the copper foil and the resin layer even under high temperature and humidity atmosphere.
Abstract:
A conductive portion is formed in a hole formed in a material sheet. A metal foil is placed on a surface of the material sheet to provide a laminated sheet. The laminated sheet is heated and pressed to provide a circuit-forming board. The metal foil includes a pressure absorption portion and a hard portion adjacent to the pressure absorption portion. The pressure absorption portion has a thickness changing according to a pressure applied thereto. The circuit-forming board provided by this method provides a high-density circuit board of high quality having reliable electrical connection.
Abstract:
Disclosed herein is a printed circuit board with embedded capacitors therein which comprises inner via holes filled with a high dielectric polymer capacitor paste composed of a composite of BaTiO3 and an epoxy resin, and a process for manufacturing the printed circuit board.
Abstract:
[Problems] To provide a process for producing a printed board having sufficient heat resistance. [Means for Solving Problems] The process for double-sided flexible printed board production comprising: a step in which a varnish comprising an aromatic resin represented by the following formula (1), an epoxy resin, and an organic solvent is directly applied to a metal foil; a step in which the solvent is removed to form a resin layer; and a step in which another foil is applied to the resin-layer side and the resin layer is cured. (In the formula, m and n are average value, m+n is a positive number of 2-200, and n is a positive number of 0.1 or larger; Ar1 and Ar3 each is a divalent aromatic group; and Ar2 is a divalent residue having a phenolic hydroxy group.)
Abstract:
A method has acts of providing at least two multilayer circuit boards, combining the at least two multilayer circuit boards to form a combined multilayer circuit board, forming multiple outer conductive vias, circuits and contacts on the combined multilayer circuit board. Each multilayer circuit board is fabricated by steps of preparing a single-layer printed circuit board having multiple chip sections, attaching at least one chip to the corresponding chip section, attaching a frame having multiple enclosures to the single-layer printed circuit board, attaching a semi-fluid glue sheet to the frame, vacuum pressing a conductive layer on the semi-fluid glue sheet and forming multiple conductive inner vias through the multilayer circuit board. The at least two multilayer circuit boards are combined by steps of reversing one of the multilayer circuit boards and vacuum pressing other multilayer circuit boards on the reversed multilayer circuit board.
Abstract:
It is an object of the present invention to provide a surface-treated copper foil comprising an electrodeposited copper foil with a chromium-free rust-proofing layer which exhibits good performance in peel strength and resistance to peel loss after chemical treatment as a printed wiring board. To achieve this object, a surface-treated copper foil comprising an rust-proofing layer and a silane coupling agent layer formed on the bonding surface of an electrodeposited copper foil to an insulating resin substrate, wherein the rust-proofing layer comprises a nickel layer having a thickness by weight of 5 to 40 mg/m2 and a tin layer having a thickness by weight of 5 to 40 mg/m2 stacked in this order, and the rust-proofing layer is provided with the silane coupling layer on the surface is applied. Also a surface-treated copper foil coated with a very thin primer resin layer, comprising the surface-treated copper foil according to the present invention (without roughening treatment), and a very thin primer resin layer having a thickness by calculation of 0.5 to 5-micron meter provided on the bonding surface of the surface-treated copper foil to the insulating resin substrate is applied.