Abstract:
A circuit board is provided, and a method for manufacturing the same, suitable for use in high frequency circuits, and comprising a planar pattern of transmission line conductors for linking components formed on or within the circuit board, the transmission line conductors being formed within a corresponding pattern of trenches arranged so that the conductors lie beneath a finished surface of the circuit board which is polished flat to permit one or more cover boards to be bonded thereto.
Abstract:
An antenna device includes an antenna substrate 30 and a multilayer substrate 36 mounted on the antenna substrate 30. The antennal substrate 30 includes an insulating part 31, an antenna element 32 composed of a conductor pattern formed on a predetermined principal surface and a ground part 34 connected to the antenna element 32 electrically and formed on the principal surface. The multilayer substrate 36 includes a wiring pattern formed in an inside layer, an opening through which the wiring pattern is exposed on the side of one principal surface of the multilayer substrate 36, a plurality of through-holes formed so as to surround the opening and penetrate the inside layer of the multilayer substrate 36 while extending from the one principal surface and a ground layer 38 arranged to make contact with respective other ends of the through-holes and arranged in a position to interleave the wiring pattern against the opening. The antenna substrate 30 is electrically joined to the multilayer substrate 36 through the through-holes.
Abstract:
A flexible printed circuit board includes: a base film that has electrical insulation property; a conductive pattern that is formed on the base film and including a pair of differential signal lines and a ground line; an insulating layer that is formed on the conductive pattern; a conductive layer that is formed on the insulating layer; and a connecting portion that electrically connects the ground line and the conductive layer through a penetration hole formed on the insulating layer.
Abstract:
A printed circuit board includes a base insulating layer, first to third signal lines, a first cover insulating layer and a conductive layer. Wide parts are formed in the first to third signal lines. The first cover insulating layer is provided on the base insulating layer so as to cover the wide parts. The conductive layer is provided on the first cover insulating layer so as to cover a portion above the wide parts.
Abstract:
A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between at least two of the electrically conductive plates (318). The capacitor (320) comprises at least one of (a) a dielectric material (328) disposed between adjacent electrically conductive plates, wherein the dielectric material (328) has a relative dielectric constant greater than 6, and (b) a mezzanine capacitor embedded within the printed circuit board (302).
Abstract:
A system and/or method for sensing the presence of moisture (e.g., rain) and/or other material(s) on a window such as a vehicle window (e.g., vehicle windshield, sunroof or backlite). In certain example embodiments, a plurality of sensing capacitors are supported by a window such as a vehicle windshield, the capacitors each having a different field and/or pattern. A sensing circuit outputs an analog signal that is based on and/or related to the capacitances of one or more of the sensing capacitors. In certain example embodiments, a flexible printed circuit board (PCB) mountable in or on a vehicle window is provided. First and second sensing circuits are formed on opposing sides of the flexible PCB, with each said sensing circuit comprising a plurality of different fractal structures. A ground plane is located between the first and second sensing circuits, with the ground plane being arranged so as to decouple the first and second capacitor arrays and to shield the first capacitor array from fields emanating from the second capacitor array and vice versa. The electronic device is configured to detect moisture on an exterior surface of the vehicle window, humidity on an interior surface of the vehicle window, and EMI.
Abstract:
According to the present invention, variations in characteristic impedance and transmission loss of a signal wiring in a glass cloth wiring substrate can be reduced. There is provided a glass cloth wiring substrate in which signal wirings, plural glass cloth layers, and conductor faces are laminated, and spaces between the signal wirings, the plural glass cloth layers, and the conductor faces are impregnated with resin, wherein the glass cloth layers are formed by weaving bundles of glass fibers in a lattice shape, and the adjacent glass cloth layers are laminated on each other while rotating the warp-weft directions of the glass fibers by a predetermined angle with respect to each other. It is preferable that the rotation angle of the warp-weft directions of the glass fibers of the adjacent glass cloth layers falls within a range from 30 to 60 degrees.
Abstract:
A printed circuit board (PCB) having a multi-layered structure for improving shielding against electromagnetic interference, the PCB including one or more signal layers and an outer grounding layer located on an outermost surface of the PCB. Accordingly, the radiation of electromagnetic waves to the outside from the outer grounding layer is prevented.
Abstract:
A flex-rigid wiring board includes a flexible board including a flexible substrate and a conductor pattern formed over the flexible substrate, a non-flexible substrate disposed adjacent to the flexible board, an insulating layer including an inorganic material and covering the flexible board and the non-flexible substrate, the insulating layer exposing at least one portion of the flexible board, a conductor pattern formed on the insulating layer, and a plating layer connecting the conductor pattern of the flexible board and the conductor pattern on the insulating layer.
Abstract:
Systems, devices and methods are disclosed herein for reducing crosstalk between pairs of differential signal conductors. One or more ground traces connected to one or more over- or under-lying ground planes by vias are located between pairs of differential signal conductors. The electrical shielding provided by the combination of the one or more ground traces and the one or more ground planes results in reduced cross-talk between different pairs of differential signal conductors, and facilitates high-speed data rates between integrated circuits and printed circuit boards. In a preferred embodiment, such ground traces and ground planes are employed in HiTCE packaging containing multiple pairs of differential signal conductors.