Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
Use of ionic liquids as solvents in base-catalysed chemical reactions wherein the ionic liquid is composed of at least one species of cation and at least one species of anion, characterized in that a cation of the ionic liquid comprises a positively charge moiety and a basic moiety, and further wherein such ionic liquids may be used as promoters or catalysts for the chemical reactions.
Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
A process for the preparation of a catalyst from a catalytic precursor comprising a support based on alumina and/or silica-alumina and/or zeolite and comprising at least one element of group VIB and optionally at least one element of group VIII, by impregnation of said precursor with a solution of a C1-C4 dialkyl succinate. An impregnation step for impregnation of said precursor which is dried, calcined or regenerated, with at least one solution containing at least one carboxylic acid other than acetic acid, then maturing and drying at a temperature less than or equal to 200° C., optionally a heat treatment at a temperature lower than 350° C., followed by an impregnation step with a solution containing at least one C1-C4 dialkyl succinate followed by maturing and drying at a temperature less than 200° C. without subsequent calcination step. The catalyst is used in hydrotreatment and/or hydroconversion.
Abstract:
The present invention provides a catalyst composition for preparing an amide, including an amino acid ionic liquid having a cation of formula (I) and an anion selected from the group consisting of an inorganic acid group, an organic acid group and a combination thereof, wherein the numbers of the anion and the cation are such that the amino acid ionic liquid is electroneutral; and a Bronsted acid. The present invention also provides a method for preparing an amide in the presence of the catalyst composition, and the method has advantages such as decreasing viscosity of ionic liquid, and increasing conversion rate of ketoximes and selectivity of amides.
Abstract:
The invention relates to a catalyst for hydroconversion of hydrocarbons, comprising a support made from at least one refractory oxide, at least one group VIII metal and at least one group VIB metal, characterized in further comprising at least one organic compound with at least two thiol functions separated by at least one oxygenated group of formula (I): HS—CxHyOz—SH (I), where x=1 to 20, preferably 2 to 9 and for example x=6, y=2 to 60, preferably 4 to 12 and z=1 to 10, preferably 1 to 6. The invention further relates to a method for preparation, a method for activation of said catalyst and use of the catalyst for the hydrotreatment and/or hydrocracking of hydrocarbons.
Abstract:
The present disclosure provides a Ziegler-Natta catalyst composition comprising a procatalyst, a cocatalyst and a mixed external electron donor comprising a first selectivity control agent, a second selectivity control agent and an activity limiting agent. A polymerization process incorporating the present catalyst composition produces a high-stiffness propylene-based polymer with a melt flow rate greater than about 50 g/10 min. The polymerization process occurs in a single reactor, utilizing standard hydrogen concentration with no visbreaking.
Abstract:
A solid, hydrocarbon-insoluble, catalyst component useful in polymerizing olefins, said catalyst component containing magnesium, titanium, and halogen, and further containing an internal electron donor having a structure: [R1—O—C(O)—O—]xR2 wherein R1 is independently at each occurrence, an aliphatic or aromatic hydrocarbon, or substituted hydrocarbon group containing from 1 to 20 carbon atoms; x is 2-4; and R2 is an aliphatic or aromatic hydrocarbon, or substituted hydrocarbon group containing from 1 to 20 carbon atoms, provided that there are from 3 to 4 atoms in the shortest chain connecting a first R1—O—C(O)—O— group and a second R1—O—C(O)—O— group.
Abstract translation:用于聚合烯烃的固体,不溶于烃的催化剂组分,所述催化剂组分含有镁,钛和卤素,并且还含有具有以下结构的内部电子给体:[R 1 -O-C(O)-O-] x R 2 其中R1在每次出现时独立地为含有1至20个碳原子的脂族或芳族烃或取代的烃基; x为2-4; 并且R 2是含有1至20个碳原子的脂族或芳族烃或取代的烃基,条件是在连接第一个R1-O-C(O)-O-基团和最短链中有3至4个原子 第二个R1-O-C(O)-O-基团。
Abstract:
A composition having a substantial or material absence of or no phosphorous and comprising a support material, a metal compound and either a hydrocarbon oil or a polar additive or a combination of both a hydrocarbon oil and polar additive. The polar additive has particularly defined properties including having a dipole moment of at least 0.45. The composition is useful in the hydroprocessing of hydrocarbon feedstocks, and it is especially useful in the hydrotreating of vacuum gas oils and petroleum resid feedstocks.
Abstract:
A modified Ziegler-Natta catalyst system, a method for preparing the catalyst system, and a process for polymerizing an olefin in the presence of the catalyst system are disclosed. The catalyst system comprises a titanium or vanadium compound, an aluminum compound, and a 2-hydroxypyridine N-oxide. Improved properties such as increased molecular weight are obtained.