Abstract:
A signal line protection assembly for an aerial vehicle includes a foot stand and a protection sleeve configured to receive a signal line. The foot stand includes a foot stand sleeve. At least a portion of the protection sleeve is received in the foot stand sleeve.
Abstract:
Systems, methods, and devices for propelling self-propelled movable objects are provided. In one aspect, a rotor assembly for a self-propelled movable object comprises: a hub comprising a first fastening feature; a drive shaft comprising a second fastening feature and directly coupled to the hub by a mating connection of the first and second fastening features, wherein the drive shaft is configured to cause rotation of the hub such that the mating connection of the first and second fastening features is tightened by the rotation; and a plurality of rotor blades coupled to the hub and configured to rotate therewith to generate a propulsive force.
Abstract:
The present invention provides methods and systems of tracking a target with an imaging device onboard an unmanned aerial vehicle. The method may comprise identifying one or more targets in a first image captured by the imaging device, receiving a user selection of a target to be tracked from the one or more targets in the one or more images, generating target information for the target to be tracked based on the user selection of the target, detecting a deviation of a detected position and/or a detected size of the target in a second image captured by the imaging device from the selected position and/or the selected size of the target in the first image and adjusting at least one of the UAV and the carrier, to reduce the determined deviation to maintain the target substantially within the field of view of the image device, based on the deviation.
Abstract:
This disclosure describes an unmanned aerial vehicle (“UAV”) and system that may perform one or more techniques for protecting objects from damage resulting from an unintended or uncontrolled impact by a UAV. As described herein, various implementations utilize a damage avoidance system that detects a risk of damage to an object caused by an impact from a UAV that has lost control and takes steps to reduce or eliminate that risk. For example, the damage avoidance system may detect that the UAV has lost power and/or is falling at a rapid rate of descent such that, upon impact, there is a risk of damage to an object with which the UAV may collide. Upon detecting the risk of damage and prior to impact, the damage avoidance system activates a damage avoidance system having one or more protection elements that work in concert to reduce or prevent damage to the object upon impact by the UAV.
Abstract:
An enhanced distance detection system for an autonomous or semi-autonomous vehicle is described here. The distance detection system includes a distance detector, which may have a limited scope of distance detection, and a directional controller, which allows extending the dimension or scope of the distance detector as the vehicle travels and performs missions. The directional controller can change the detection direction of the distance detector with a motorized gimbal or functionally similar system, and the change in the detection direction can be integrated with the status of and other instructions executed by the vehicle.
Abstract:
Methods and apparatus for vertical or short takeoff and landing, and operational control during flight. In one embodiment, the apparatus comprises two or more counter driven rings with one or more airfoils attached. In one variant, there is an upper ring and a lower ring, each with multiple airfoils attached. In one variant, lift is generated largely via ambient air currents, allowing for long term on-station operation of the device. In another variant, a fuselage (or parts thereof) of the apparatus can be independently controlled, including for example as to attitude relative to other components of the craft.
Abstract:
The invention relates to an aircraft comprising a fuselage (1), a plurality of propeller units (3) that can pivot in relation to the fuselage (1), and wings (5) that can pivot at least partially in relation to the fuselage (1) and independently of the propeller units (3).
Abstract:
Various embodiments provide methods for controlling landings of a UAV in a landing zone including a plurality of landing bays. Various embodiments include a method implemented on a computing device for receiving continuous real-time sensor data from a transceiver and from sensors onboard the UAV, and detecting a target landing bay within the plurality of landing bays within the landing zone that is available for landing based on the continuous real-time sensor data. Orientation and position coordinates for landing in the target landing bay may be calculated based on the continuous real-time sensor data. Information regarding positions and flight vectors of a plurality of autonomous UAVs may be obtained, and a flight plan for landing in the target landing bay may be generated based on the orientation and the position coordinates, positions and flight vectors of the plurality of autonomous UAVs and a current orientation and position of the UAV.
Abstract:
A method and a device for flying and retrieving an unmanned aerial vehicle are provided. The method includes: detecting a state parameter of the unmanned aerial vehicle in real time; judging, based on the state parameter, whether the unmanned aerial vehicle is to be flown or to be retrieved in the handheld way; and controlling a rotor wing to rotate to take off, in a case of determining that the unmanned aerial vehicle is to be flown in the handheld way; or controlling the rotor wing to stop rotating, in a case of determining that the unmanned aerial vehicle is to be retrieved in the handheld way. With the method according to the present disclosure, a user can fly and retrieve the unmanned aerial vehicle without using a remote control device and the unmanned aerial vehicle becomes free from the control of other devices.
Abstract:
A forklift operation assist system includes a forklift truck having a load-handling device with a lifting portion, a small unmanned aerial vehicle that is mountable on the forklift truck and has an image capture device, and a display device that presents images captured by the image capture device. The forklift truck includes a vehicle controller that is electrically connected to the display device. The small unmanned aerial vehicle includes an aircraft controller that communicates with the vehicle controller. The small unmanned aerial vehicle takes off the forklift truck when a lifting operation of the lifting portion is detected. The display device presents the images captured by the image capture device while the aerial vehicle is flying.