Abstract:
A filter device with a UVC lamp for filtering fluids, with a lamp housing, which is installed in a flow of the fluid to be filtered and has a principal axis, is characterized by the fact that at least one cleaning element is arranged in contact with a fluid-side surface of the lamp housing and can rotate about an axis of rotation that coincides with the principal axis.
Abstract:
An object is to dissolve and remove rust and scale deposits of inorganic compounds formed in a reservoir, in which to store water that requires processing, or in piping, or on a jacket of a UV-lamp without using any chemicals. A photocatalytic water-processing system utilizes a reservoir 11 in which organic and inorganic materials present in water 100 that requires processing the water are decomposed. The system comprises: a circulation path including: a main unit 2 arranged outside the reservoir 11; an inlet pipe 8 connecting to an inlet of the main unit 2; and an outlet pipe 9 connecting to an outlet of the main unit 2; a pump 4 for circulating the water; a filter 5 arranged within the main unit 2; photocatalytic processing means arranged downstream of the filter 5 and including a photocatalyst carrier 7 and a UV-lamp 6; and an electrode unit 3 arranged within the reservoir 11. The water 100 is electrolyzed as a current is applied to the electrode unit 3.
Abstract:
Method and apparatus for treating a pressurized liquid. The apparatus includes pressurized liquid treatment chamber (16) having a window (18) transmissive to UV light; a UV light source (14a, 14h) outside of the chamber to emit UV light into the chamber, a shaft (24) which extending between inlet and outlet ends of the chamber which turns about a central axis of the chamber, a flexible cleaning member (30) affixed to the shaft and engaging an interior surface of the window (18); and at least one member (36) extending radially from the shaft into the treatment chamber (16) to disrupt axial flow of water through the chamber.
Abstract:
Method and apparatus for treating a pressurized liquid. The apparatus includes pressurized liquid treatment chamber having a window transmissive to UV light; a UV light source outside of the chamber to emit UV light into the chamber; a shaft which extending between inlet and outlet ends of the chamber which turns about a central axis of the chamber; a flexible cleaning member affixed to the shaft and engaging an interior surface of the window; and at least one member extending radially from the shaft into the treatment chamber to disrupt axial flow of water through the chamber.
Abstract:
A chemical actinometer for determining the absolute level of exposure to ultraviolet light of a fluid to be treated for disinfection purposes. The actinometer includes a translucent sample cell through which the chemical actinometric fluid flows. The area of exposure of the actinometric fluid is controlled by allowing the ultraviolet light to pass through only a portion of the sample cell. A suitable actinometric fluid is a combination of iodide and iodate in a solution. The sample cell is positioned within an ultraviolet disinfection reactor at a position to receive ultraviolet light from the ultraviolet light source.
Abstract:
Method and apparatus for treating a pressurized liquid. The apparatus includes pressurized liquid treatment chamber having a window transmissive to UV light; a UV light source outside of the chamber to emit UV light into the chamber; a shaft which extending between inlet and outlet ends of the chamber which turns about a central axis of the chamber; a flexible cleaning member affixed to the shaft and engaging an interior surface of the window; and at least one member extending radially from the shaft into the treatment chamber to disrupt axial flow of water through the chamber.
Abstract:
There is disclosed an optical radiation sensor system. The system includes a sensor device and a cleaning device. The sensor device detects and responds to radiation from a radiation field and includes a surface that is movable with respect to the radiation field between a first position in which the surface is in the radiation field and a second position in which at least a portion of the surface is out of the radiation field. The cleaning device operates to remove fouling materials from at least a portion of the surface in the second position. The cleaning device may be a chemical cleaning device, a mechanical cleaning device or a combined chemical/mechanical device.
Abstract:
A system for treating a nitrate contaminated liquid to remove deleterious or undesirable nitrates therefrom wherein a supply of ionized nitrogen is entrained into a continuous stream of a nitrate contaminated liquid and thereafter is exposed to treating apparatus which changes the nitrates in the nitrate contaminated liquid into at least ionized nitrogen which then combines with the ionized nitrogen entrained in the continuous stream of a nitrate contaminated liquid to form a separated nitrogen gas and a treated liquid.
Abstract:
Turbulent mixing in a UV system is increased by positioning one or more ring-shaped devices, such as washers, at one or more predetermined locations on the exterior surface of each lamp unit in the system. The washers may have the same or different diameters. Turbulent mixing is also increased by retaining the upstream end of each lamp unit in a ring-shaped device, alone or in combination with washers positioned on each lamp unit exterior surface as described above.
Abstract:
A method and apparatus are disclosed for using ultrasonic energy in conjunction with an ultraviolet water sterilization system. An ultrasonic transducer assembly is placed in or around one end of the sterilization chamber for producing the ultrasonic energy. Ultrasonic vibrations are then applied automatically on a regular and intermittent basis to clean the components within the sterilization chamber and disrupt the chemical and physical action which causes scaling due to dissolved minerals and organic materials in the water. The ultrasonic vibrations cause a preventative cleaning action by the streaming and stirring of the water. Actual cleaning action is also created by cavitation and sweeping actions. The sweeping action is accomplished by frequency modulation which, by creating varying hot and cold spots within the sterilization chamber, allows for a uniform cleaning of a quartz sleeve encasing a UV lamp within the sterilization chamber. Ultrasonic vibrations also create a germicidal action.