Abstract:
The specification describes a VAD method for producing optical fiber preforms by depositing soot onto a solid core rod. The solid core rod preferably has a uniform composition, doped or undoped, suitable for the center core region of the preform. The primary cladding layer, and additional cladding layers if desired, are produced by depositing soot on the center core rod. The surface of the center core rod is treated with an etchant torch that traverses the center core rod in front of the soot deposition torch. This produces a clean interface between the core and primary cladding. This soot-on-center-core-rod method allows the production of sharp index profiles by reducing the diffusion of dopants into and out of the center core portion of the preform that occurs in soot-on-soot processes.
Abstract:
According to a previously known method for producing a cylindrical quartz glass body having a low OH content, first an elongate, porous soot body is produced on a rotating support by flame-hydrolyzing a silicon-containing compound and removing layers of SiO2 particles, whereupon said soot body is subjected to a dehydration treatment and is vitrified in a vitrification furnace. The aim of the invention is to create a simple method which is based on said method and makes it possible to produce a quartz glass cylinder having a low OH content while evenly distributing the OH concentration without additional technical complexity. Said aim is achieved by subjecting the soot body to a pretreatment in protective gas and/or a vacuum in the vitrification furnace following the dehydration treatment but prior to the vitrification thereof, the soot body being heated to a temperature ranging between 100° C. and 1350° C. in a heating area.
Abstract:
The invention includes methods and apparatus for depositing soot onto a glass surface to minimize water in the deposited soot and the diffusion of the water into the glass surface. The invention includes depositing a first layer of soot a on the glass surface at a first forward traverse rate and depositing a second layer of soot at a second forward traverse rate.
Abstract:
The present invention relates to a method of making a soot particle and apparatus for making such soot particle. Preferably the method of making the soot particle is substantially free of the step of combusting a fuel and substantially free of the step of forming a plasma. Preferably, the apparatus is devoid of a heating element associated with both combustion and formation of a plasma. A preferred technique for at least one heating step for forming the soot particle is induction heating.
Abstract:
The specification describes methods for the manufacture of very large optical fiber preforms wherein the core material is produced by MCVD. Previous limitations on preform size inherent in having the MCVD starting tube as part of the preform process are eliminated by removing the MCVD starting tube material from the collapsed MCVD rod by etching or mechanical grinding. Doped overcladding tubes are used to provide the outer segments of the refractive index profile thus making most effective use of the MCVD produced glass and allowing the production of significantly larger MCVD preforms than previously possible.
Abstract:
In order to provide a quartz glass crucible distinguished by high purity, high opacity and/or low transmissibility in the IR spectrum, it is proposed on the basis of a known quartz glass crucible of opaque quartz glass with a crucible body symmetrical in relation to a rotational axis, an outer zone (3) of opaque quartz glass transitioning radially toward the inside into an inner zone (2) of transparent quartz glass and with a density of at least 2.15 g/cm3, that according to the invention, the crucible body (1) be made of a synthetic SiO2 granulate with a specific BET surface ranging from 0.5 m2/g to 40 m2/g, a tamped volume of at least 0.8 g/cm3 and produced from at least partially porous agglomerates of SiO2 primary particles. A process for producing a quartz glass crucible of this kind is distinguished according to the invention in that for the production of the crucible a SiO2 granulate is used which was formed from at least partially porous agglomerates of synthetically manufactured SiO2 primary particles and that it has a specific BET surface ranging from 0.5 m2/g to 40 m2/g and a tamped volume of at least 0.8 g/cm3, the heating effected in such a way that a vitrification front advances from the inside outward while an inner zone (4) of transparent quartz glass is being formed.
Abstract:
The specification describes a VAD method for producing optical fiber preforms by depositing soot onto a solid core rod. The solid core rod preferably has a uniform composition, doped or undoped, suitable for the center core region of the preform. The primary cladding layer, and additional cladding layers if desired, are produced by depositing soot on the center core rod. The surface of the center core rod is treated with an etchant torch that traverses the center core rod in front of the soot deposition torch. This produces a clean interface between the core and primary cladding. This soot-on-center-core-rod method allows the production of sharp index profiles by reducing the diffusion of dopants into and out of the center core portion of the preform that occurs in soot-on-soot processes.
Abstract:
A modified synthetic silica powder is produced by heating in vacuum an amorphous synthetic silica powder produced by a sol-gel process, and then cooling the heated silica powder in an atmosphere containing helium. When the modified synthetic silica powder is fused and vitrified in a process of crucible production, the resulting quartz glass crucible contains hardly any bubbles.
Abstract:
A method for manufacturing a preform, which is a base material of an optical fiber, comprising: forming porous-glass-base-material by accumulating glass particles; dehydrating the porous-glass-base-material by heating the porous-glass-base-material in an atmosphere of gas that contains chlorine; heating the porous-glass-base-material dehydrated by the dehydrating with a first heating temperature in an atmosphere of a first inert gas; and vitrifying the porous-glass-base-material by heating the porous-glass-base-material with a second heating temperature in an atmosphere of second inert gas.
Abstract:
A method for forming a fused silica glass includes delivering a silica precursor to a burner and passing the silica precursor through the flame of the burner to form silica particles, depositing the silica particles on a planar surface to form a flat, porous preform, dehydrating the porous preform, and consolidating the porous preform into a flat, dense glass.