Abstract:
To provide opaque quartz glass having no water absorbing properties and being excellent in infrared light shielding properties, and a method for its production. In the production of opaque quartz glass of the present invention, a fine amorphous silica powder and a pore forming agent are mixed, then molded and heated at a predetermined temperature, to obtain opaque quartz glass wherein contained pores are closed pores, the average pore size of pores is from 5 to 20 μm, and the content density of pores is high, whereby the heat shielding properties are high.
Abstract:
A method for producing a quartz glass body from a get body is provided, wherein the gel body generated from a colloidal suspension is at least formed and compressed into the quartz glass body Displacement bodies are added to the colloidal suspension prior to gelating into the gel body, and are completely removed from the gel body after gelating, wherein hollow spaces are generated at the positions of the removed displacement bodies, so that a translucent or opaque quartz glass body is generated. Further, a gel body for producing a quartz glass body is provided, wherein displacement bodies are introduced into the gel body that can be completely removed from the gel body, so that hollow spaces arise at the positions of the displacement bodies. A quartz glass body is also provided that includes vacuoles or hollow spaces filled with gas.
Abstract:
In order to provide a vitreous silica crucible which does not employ a crystallization accelerator but is difficult to deform during its use even under high temperature, and is easily manufactured, there is provided a vitreous silica crucible for pulling single-crystal silicon wherein the outer surface layer is formed of a bubble-containing vitreous silica layer, the inner surface layer is formed of a vitreous silica layer whose bubbles are invisible to the naked eye, a surface of the outer surface layer includes an unmelted or half-melted silica layer (abbreviated as a half-melted silica layer), and the center line average roughness (Ra) of the half-melted silica layer is 50 to 200 μm, also preferably, and the thickness of the half-melted silica layer is 0.5 to 2.0 mm.
Abstract:
This invention provides a method for manufacturing an optical glass in order to prevent the deterioration of the burner used in the synthesis of glass particles that form the optical glass, and to obtain a stable quality optical glass. In this invention, the number of residual bubbles with a diameter of 0.3 mm and more is 0.005/cm3 or less per unit volume of the optical glass. Such optical glass is obtained by controlling the temperature of an end face of the burner for glass synthesis during the deposition of the glass particles by regulating the relationship of the flow velocity or the flow volume between an inflammable gas and a combustion-supporting gas.
Abstract translation:本发明提供一种制造光学玻璃的方法,以防止在形成光学玻璃的玻璃颗粒的合成中所使用的燃烧器的劣化,并获得稳定质量的光学玻璃。 在本发明中,每单位体积的光学玻璃的直径为0.3mm以上的残留气泡的数量为0.005 / cm 3以下。 这样的光学玻璃是通过调节在可燃性气体和助燃气体之间的流动速度或流量之间的关系来控制玻璃粒子沉积时的玻璃合成用燃烧器的端面的温度而得到的。
Abstract:
An opaque silica glass article comprising a transparent portion and an opaque portion, wherein the opaque portion has an apparent density of 1.70-2.15 g/cm3 and contains 5×104−5×106 bubbles per cm3, said bubbles having an averaged diameter of 10-100 &mgr;m; and the transparent portion has an apparent density of 2.19-2.21 g/cm3 and the amount of bubbles having a diameter of at least 100 &mgr;m in the transparent portion is not more than 1×103 per cm3. The opaque silica glass article is made by a process wherein a mold is charged with a raw material for forming the opaque portion, which is a mixture comprising a silica powder with a small amount of a silicon nitride powder, and a raw material for forming the transparent portion so that the two raw materials are located in the positions corresponding to the opaque and the transparent portions, respectively, of the silica glass article to be produced; and the raw materials are heated in vacuo to be thereby vitrified.
Abstract translation:一种不透明的石英玻璃制品,其包括透明部分和不透明部分,其中所述不透明部分的表观密度为1.70-2.15g / cm 3,并且每立方厘米含有5×10 4至5×10 6个气泡,所述气泡具有10-100μm的平均直径; 并且透明部分的表观密度为2.19-2.21g / cm 3,透明部分中直径至少为100μm的气泡量不超过1×103 / cm3。 不透明的石英玻璃制品通过以下方法制造,其中模具装有用于形成不透明部分的原料,该不透明部分是包含少量氮化硅粉末的二氧化硅粉末的混合物,以及用于形成 透明部分,使得两个原料分别位于与待制造的石英玻璃制品的不透明部分和透明部分相对应的位置; 并将原料真空加热,从而玻璃化。
Abstract:
Thermally stable, mechanically strong microporous glass articles with large pore volumes, surface areas, and varying pore sizes, and methods for making such articles are disclosed. In particle form, such as beads, the microporous glass articles are useful as catalyst supports in applications such as petroleum catalytic refiners, chemical processes and motor vehicle catalytic mufflers. The mechanical strength and the dimensional stability of the microporous glass articles at elevated temperatures can be improved if the articles are preshrunk, such as by brief exposure to high temperatures, before their intended use, and can be improved even further if treated with certain metal oxides.
Abstract:
Thermally stable, mechanically strong microporous glass articles with large pore volumes, surface areas, and varying pore sizes, and methods for making such articles are disclosed. In particle form, such as beads, the microporous glass articles are useful as catalyst supports in applications such as petroleum catalytic refiners, chemical processes and motor vehicle catalytic mufflers. The mechanical strength and the dimensional stability of the microporous glass articles at elevated temperatures can be improved if the articles are preshrunk, such as by brief exposure to high temperatures, before their intended use, and can be improved even further if treated with certain metal oxides.
Abstract:
1. A METHOD FOR MAKING A LOW ALKALI-CONTAINING POROUS GLASS ARTICLE HAVING A HIGH THERMAL STABILITY COMPRISING: (A) HEATING A PHASE-SEPARABLE ALKALI-BOROSILICATE GLASSS TO A TEMPERATURE SUFFFICIENT TO SEPARATE THE GLASS INTO TWO PHASES, ONE OF WHICH IS A BORATE-RICH PHASE AND IS SOLUBLE IN AN AQUEOUS SOLUTION, (B) A FIRST LEACHING OF THE PHASE-SEPARATED GLASS WITH WATER FOR A TIME AND AT A TEMPERATURE SUFFICIENT TO REMOVE A MAJOR PORTION OF THE BORATE-RICH PHASE TO FORM A POROUS GLASS HIGH IN SILICA, (C) A SUBSEQUENT LEACHING OF THE PREVIOUSLY LEACHED POROUS GLASS WITH AN ACID FOR A TIME AND AT A TEM-
PERATURE SUFFICIENT TO REMOVE SUFFICIENT ALKALI AND BORATE NOT REMOVAL IN THE FIRST LEACHING TO PROVIDE A LOW ALKALI-BORATE CONTAINING MICROPOROUS GLASS STRUCTURE HAVING A HIGH THERMAL STABILITY.
Abstract:
A chemical vapor deposition method for producing a porous organosilica glass film comprising: introducing into a vacuum chamber gaseous reagents including at least one precursor selected from the group consisting of an organosilane and an organosiloxane, and a porogen that is distinct from the precursor, wherein the porogen is a C4 to C14 cyclic hydrocarbon compound having a non-branching structure and a degree of unsaturation equal to or less than 2; applying energy to the gaseous reagents in the vacuum chamber to induce reaction of the gaseous reagents to deposit a preliminary film on the substrate, wherein the preliminary film contains the porogen; and removing from the preliminary film substantially all of the labile organic material to provide the porous film with pores and a dielectric constant less than 2.6.
Abstract:
A process for manufacture of a component made of opaque synthetic quartz glass, and a quartz glass tube manufactured according to said process. The process comprises (i) providing a starting material in the form of granulated material of highly pure, synthetic SiO2 comprising at least partially porous agglomerates of SiO2 primary particles, the granulated material having a compacted bulk density of no less than 0.8 g/cm3, (ii) filling the granulated material into a mold and converting it to an opaque quartz glass preform through a process of melting, and (iii) reshaping the preform in a heat reshaping process to obtain a component made of opaque quartz glass. A quartz glass tube is made of quartz glass consisting of a granulated material of synthetic SiO2 with a lithium content of no more than 100 wt-ppb, and the wall thickness of said component being in the range of 0.5 mm to 15 mm.