Abstract:
The present invention relates to a novel printable paste composition and its use in etching conductive films formed by a plurality of interconnecting silver nano-wires. After etching, the conductive film has a pattern of conductive and non-conductive areas with low visibility. The etched films are suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
Abstract:
A conductive paste composition is provided. The conductive paste composition includes 20 to 70 weight % of silver nanoparticles having an average particle size of 1 nm to 250 nm based on a total weight of the conductive paste composition, and 0.01 to 2 weight % of silver-decorated carbon nanotubes based on the total weight of the conductive paste composition.
Abstract:
A pre-plating solution for making a printed circuit board includes carbon nanotubes of 0.01-3 wt %, a surfactant of 0.01-4 wt %, an alkaline substance of 0.01-1 wt % and a solvent. A method for preparing a pre-plating solution comprising the steps of: providing a plurality of carbon nanotubes; purifying the carbon nanotubes; treating the purified carbon nanotubes with an acid; mixing the treated carbon nanotubes, an alkaline substance and a solvent to form suspension; and adding surfactant into suspension.
Abstract:
Provided are a composition for an anisotropic conductive adhesive, a method of forming a solder bump and a method of forming a flip chip using the same. The composition for an anisotropic conductive adhesive includes a low melting point solder particle and a thermo-curable polymer resin. The anisotropic conductive adhesive includes forming a mixture by mixing a polymer resin and a curing agent, and mixing a deforming agent, a catalyst or a reductant with the mixture.
Abstract:
System, devices and methods are presented that provide an imaging array fabrication process method, comprising fabricating an array of semiconductor imaging elements, interconnecting the elements with stretchable interconnections, and transfer printing the array with a pre-strained elastomeric stamp to a secondary non-planar surface.
Abstract:
According to one embodiment, a circuit board comprises an anisotropic film disposed outwardly from a first flexible dielectric layer, and a second flexible dielectric layer disposed outwardly from the anisotropic film. The first and second flexible dielectric layers each have at least one conductive trace conductively coupled to a pad. The anisotropic film forms a via region that conductively couples the pad of the first flexible dielectric layer to the pad of the second flexible dielectric layer, and electrically isolates the conductive trace of the first flexible dielectric layer from the conductive trace of the second flexible dielectric layer.
Abstract:
Disclosed is a method of manufacturing a pattern electrode which excels in electroconductivity, transparency and etching property and a pattern electrode, the method comprising a step of applying a metal particle containing solution onto a substrate to form a conductive layer, a step of pattern printing a metal particle removing solution on a portion of the conductive layer, which is to be removed, and a step of washing the resulting printed material, whereby the portion of the conductive layer on which the metal particle removing solution has been printed is removed to form a non-conductive portion.
Abstract:
A semiconductor package is disclosed that includes a semiconductor device; a circuit board; and a connection mechanism including a first conductive terminal provided on the semiconductor device, and a second conductive terminal provided on the circuit board side, the connection mechanism electrically connecting the semiconductor device and the circuit board via the first conductive terminal and the second conductive terminal. At least one of the first conductive terminal and the second conductive terminal of the connection mechanism includes one or more carbon nanotubes each having one end thereof fixed to the surface of the at least one of the first conductive terminal and the second conductive terminal, and extending in a direction away from the surface. The first conductive terminal and the second conductive terminal engage each other through the carbon nanotubes.
Abstract:
A circuit board structure and a manufacturing method thereof are provided. The circuit board structure includes a composite substrate, a dielectric layer, and a circuit layer. The composite substrate includes a metal substrate doped with non-metal powders and a metal buffer layer. A surface of the metal buffer layer opposite to the other surface of the metal buffer layer in contact with the metal substrate is treated by a polishing process. The dielectric layer is formed on the polished surface of the metal buffer layer, and the circuit layer is formed on the dielectric layer. Alternatively, a barrier layer is interposed between the dielectric layer and the metal buffer layer for preventing a diffusion effect of the metal buffer layer.
Abstract:
The present invention relates to a flexible sensing material made from (a) at least one flexible polymeric layer and (b) at least one conductive, curable coating layer containing about 0.01 wt. % to about 5 wt. % of multi-walled carbon nanotubes having a diameter of greater than about 4 nm, about 10 wt. % to about 99 wt. % of an aliphatic urethane acrylate and about 0.1 wt. % to about 15 wt. % of a photoinitiator, wherein the weight percentages are based on the weight of the formulation, wherein the coating layer is curable by exposure to radiation and wherein the cured coating layer has a surface resistivity of about 102Ω/□ to about 1010Ω/□. The inventive sensing material may prove useful for sensing one or more of pressure, temperature and moisture and find use in a wide variety of applications.