Abstract:
The present invention provides a printed wiring board design aiding apparatus, method, and program that can easily and inexpensively predict the displacement of a printed wiring board of complicated shape and configuration due to temperature change. The printed wiring board design aiding program makes a computer execute the steps including a mesh division step that divides an analytical model of a printed wiring board obtained as data into meshes, a mesh displacement calculation step that calculates displacements of respective meshes of a printed wiring board which is divided in the mesh division step, a mesh displacement connection step that connects mesh displacements calculated in the mesh displacement calculation step so that the inclination of borders of respective meshes become equal, and a displacement calculation step that calculates a displacement using an entire displacement of a printed wiring board which is obtained in the mesh displacement connection step.
Abstract:
Disclosed is a method for preparing a laminate less than or equal to about 98 micrometers in thickness and having substantially diminished curling which comprises the steps of (i) providing a metal foil, a thermoplastic resin film and a woven fabric, and (ii) laminating the thermoplastic resin film between the metal foil and woven fabric, wherein the combination of thermoplastic and fabric has a coefficient of thermal expansion that differs from the coefficient of thermal expansion of the metal foil by less than about 30 ppm. Also disclosed are laminates comprising a thermoplastic resin film between a layer of metal foil and a layer of woven fabric. Also disclosed are laminates consisting of either a polyetherimide film and a woven glass fabric or consisting of a layer of woven glass fabric with a layer of polyetherimide film laminated to each side of the fabric. Articles comprising a laminate of the invention are also disclosed.
Abstract:
An integrated circuit package includes a substrate having a central axis dividing the substrate into an upper half and a lower half and an integrated circuit coupled to the substrate. A layer is provided within the substrate in the lower half thereof that is configured to resist warpage of the integrated circuit package, the layer provided a distance from the central axis.
Abstract:
Disclosed are a heat-resistant resin laminate film comprising a heat-resistant insulating film such as a polyimide film and a heat-resistant resin layer laminated thereon, which laminate film is free from warp; and a laminate film with a metal layer, comprising a heat-resistant insulating film and a metal layer laminated thereon through a heat-resistant resin layer, which laminate film with a metal layer is free from warp in the state that a circuit pattern is formed. In the heat-resistant resin laminate film, a heat-resistant resin layer is laminated on at least one surface of the heat-resistant insulating film, wherein the heat-resistant resin layer has a coefficient of linear expansion kA (ppm/° C.) within the range of k−10≦kA≦k+20 (k: coefficient of linear expansion of the heat-resistant insulating film). The laminate film with a metal layer is one obtained by laminating the metal layer on the heat-resistant resin layer of the heat-resistant resin laminate film.
Abstract translation:公开了一种耐热树脂层压膜,其包含层压在其上的聚酰亚胺膜和耐热树脂层之类的耐热绝缘膜,该层压膜不翘曲; 以及具有金属层的层压膜,其包含耐热绝缘膜和通过耐热树脂层层合在其上的金属层,该层压膜与金属层在形成电路图案的状态下没有翘曲 。 在耐热性树脂层叠膜中,在耐热性绝缘膜的至少一个面上层叠耐热性树脂层,耐热树脂层的线膨胀系数kA(ppm /℃) )在k-10 <= kA <= k + 20的范围内(k:耐热绝缘膜的线膨胀系数)。 具有金属层的层压膜是通过将耐热树脂层压膜的耐热树脂层上的金属层层压而成的层压膜。
Abstract:
The invention provides a heat sink board and a manufacturing method thereof, which can realize a high product accuracy and superior productivity. To that end, a second heat sink (3) having a smaller linear expansion coefficient than that of a first heat sink (2) is bonded to the first heat sink (2) to form a heat sink board. The second heat sink (3) is fitted to the first heat sink (2), and a material of the first heat sink (2) in the vicinity of a boundary between the fitted heat sinks is plastically deformed for close adhesion to the second heat sink (3). Such a forming method makes bonding between the first and second heat sinks possible at room temperature, and the heat sink board made of a composite member having a high flat-surface accuracy can be easily and reliably obtained.
Abstract:
A semiconductor device has a semiconductor package with a semiconductor element is mounted on a mounting substrate. The mounting substrate has at least two anisotropic areas which are located at both sides of a semiconductor package mounting area in a way to sandwich it and have an anisotropic linear expansion coefficient. In the anisotropic areas, a linear expansion coefficient in a direction toward a center of the semiconductor package mounting area is larger than a linear expansion coefficient in an in-plane direction of the mounting substrate perpendicular to the direction and larger than a linear expansion coefficient of the semiconductor package mounting area in a direction toward the anisotropic areas. The semiconductor device makes it possible to reduce thermal deformation of a semiconductor package mounting area of a mounting substrate easily and at low cost.
Abstract:
Contact structures exhibiting resilience or compliance are formed. The contact structures may be formed on a sacrificial substrate. The contact structures are attached to an array of electrical connections on a substrate to form a contact assembly. The electrical connections on the substrate may be metallic pads.
Abstract:
An apparatus and method for connecting one substrate, such as a semiconductor die, to an opposing substrate, such as a semiconductor package or circuit board, through a plurality of intermediate thermal compensator devices, each of which can incrementally and/or locally mitigate the stresses imposed by differences in the two substrate's thermal expansion characteristics. The compensator devices can be coupled to one another, with the resulting assembly attached to the first substrate on one side, and to the second substrate on the other side, through solder bump attach, or some equivalent method. The method of the invention provides electrical connection and thermal dissipation between the two substrates as well as providing mechanical protection by absorbing the stresses imposed by the difference in thermal expansion characteristics of the two substrates.
Abstract:
A metallization process and material system for metallizing either blind or through vias in silicon, involving forming a low coefficient of thermal expansion composite or suspension, relative to pure metals, such as copper, silver, or gold, and filling the via holes in the silicon with the paste or suspension. The suspensions sinter with minimal bulk shrinkage, forming highly conductive structures without the formation of macroscopic voids. The selected suspension maintains a coefficient of thermal expansion closer to that of silicon.
Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.