Abstract:
A rigid multi-layer printed circuit board (PCB) has an embedded elongated conductor between opposing first and second reference planes. The first and second reference planes are formed of conductive material and are electrically isolated from the conductor by intervening insulative material. Each of the first and second reference planes have a plurality of spaced apart windows extending therethrough, the windows aligned with the elongated conductor.
Abstract:
To suppress occurrence of a difference in transmission time due to a difference in length between signal lines, there is provided a printed wiring board having: an insulating substrate (10); a first signal line (L31) formed on the insulating substrate (10); a second signal line (L32) having a shorter length than that of the first signal line (L31); and a ground layer (30) formed for the first signal line (L31) and the second signal line (L31) via an insulating material (10). The ground layer (30) includes a first ground layer (G31) corresponding to a first region (D1) and a second ground layer (G32) corresponding to a second region (D2). The first region (D1) is defined based on the first signal line (L31) and has a first predetermined width (W31). The second region (D2) is defined based on the second signal line (L32) and has a second predetermined width (W32). The first ground layer (G31) has a remaining ratio lower than a remaining ratio of the second ground layer (G32).
Abstract:
A touch screen comprises a glass substrate, a first conductive layer, an insulating adhesive layer and a second conductive layer. The first conductive layer is directly formed on the glass substrate and comprises first conductive pattern areas; the insulating adhesive layer is attached to the glass substrate, and one side of the insulating adhesive layer close to the glass substrate forms a first groove; the first conductive pattern area is received in the first groove and insulated from each other; one side of the insulating adhesive layer away from the glass substrate, is provided with a second groove; and the second conductive layer is received in the second groove, thus forming a plurality of second conductive pattern areas insulated with each other. The first conductive layer is directly formed on the glass substrate and made of a metal material, thus omitting an adhesive layer and saving the cost.
Abstract:
An electrical conductor includes a substrate having micro-channels formed in the substrate. A plurality of spaced-apart first micro-wires is located on or in the micro-channels, the first micro-wires extending across the substrate in a first direction. A plurality of spaced-apart second micro-wires is located on or in the micro-channels, the second micro-wires extending across the substrate in a second direction different from the first direction. Each second micro-wire is electrically connected to at least two first micro-wires and at least one of the second micro-wires has a width less than the width of at least one of the first micro-wires.
Abstract:
Card body (CB) for a dual interface smart card (SC) comprising a metal foil (MF) or metallized layer (ML). An opening in the metal layer may be sized so that a coupler coil (CC) of a booster antenna (BA) is exposed. Improving coupling between a contactless reader and a transponder comprising providing a patch booster antenna (PBA) on a substrate disposed on the reader. Various booster antenna designs are disclosed.
Abstract:
An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
Abstract:
A transparent conductive film includes a substrate, a transparent conductive layer, a lead electrode, and a first connecting wire, the substrate includes a first region and a second region located on the edge of the substrate; the transparent conductive layer is embedded in the first region, the lead electrode is formed on the second region; first connecting wire is formed on the substrate and located between the transparent conductive layer and the lead electrode, thereby the conductive material of the first conductive mesh and that of second conductive mesh are electrically connected; the first connecting is arranged between the transparent conductive layer and the lead electrode for electrically connecting the transparent conductive layer and the lead electrode, which can enhance the electrical connection strength between the transparent conductive layer and the lead electrode, such that the conductivity of the conductive film is great, and the yield is improved.
Abstract:
An improved multi-layered ceramic package includes a plurality of signal planes, each having one or more signal lines; a plurality of vias, each providing one of a voltage (Vdd) power connection or a ground (Gnd) connection; and at least one reference mesh plane adjacent to one or more signal planes. The reference mesh plane includes spaced mesh lines that are separated by spaces that alternate in a narrow-wide or wide-narrow pattern. A multi-layered ceramic package, using the mesh plane with alternating spaces, generates significantly lower far-end (FE) noise in the ceramic package than a conventional mesh plane with constant spaces. The noise is further reduced by placing shield lines on opposite sides of signal lines in the signal plane. A method, computer system, and program code that generate the design for the multi-layered ceramic package are also disclosed.
Abstract:
A micro-structured article is disclosed comprising a free-standing network of interconnected traces surrounding randomly-shaped cells wherein the interconnected traces comprise at least partially-joined nanoparticles. In a preferred embodiment, the nanoparticles comprise a conductive metal. The article is preferably formed by coating a nanoparticle-containing emulsion onto a substrate and drying the emulsion. The nanoparticles self-assemble into the network pattern which is subsequently removed from the substrate. A preferred method of removing the network from the substrate comprises the steps of electroplating the traces and subsequently exposing the traces to acid to release the network from the substrate.
Abstract:
A conductive micro-wire structure includes a substrate. A plurality of spaced-apart electrically connected micro-wires is formed on or in the substrate forming the conductive micro-wire structure. The conductive micro-wire structure has a transparency of less than 75% and greater than 0%.