Abstract:
A pumping system including a plurality of pumps each having a pump fluid outlet, a drive shaft, a prime mover, and fluid displacing members operatively coupled with the drive shaft. A common fluid conduit may be fluidly coupled with each pump fluid outlet. A control system of the pumping system includes position sensors operable to generate information relating to phase and/or speed of each pump, pressure sensors operable to generate information relating to fluid pressure spikes, and a controller in communication with the position and pressure sensors. The controller is operable to cause the prime movers to adjust the phasing of the pumps with respect to each other, based on the information relating to fluid pressure spikes, and synchronize the speed of the pumps.
Abstract:
A method of setting a zero point according to one embodiment of the present disclosure relates to a method of setting a zero point of a bi-directional linear pump for an active suspension apparatus supplying fluid to an actuator connected to a coil spring coupled to a wheel of a vehicle, which includes controlling at least one of a first valve disposed between the actuator and the pump and a second valve disposed between the pump and a fluid reservoir by means of an electronic control unit (ECU) in a first Operation, moving a piston disposed inside the pump to one side to move the piston up to a MAX Stroke position of the one side in a second Operation, calculating an approximate MIN Stroke position of the other side of the piston based on the MAX Stroke position of the one end thereof in a third Operation, moving the piston to the other side to move the piston up to a MIN Stroke position in a fourth Operation, comparing the approximate MIN Stroke position of the other side with the MIN Stroke position thereof in a fifth Operation, and determining whether or not the pump is normal in a sixth Operation based on the comparison result.
Abstract:
Apparatus are provided for infusion devices and related systems and operating methods. An exemplary system includes a motor, a sensing arrangement coupled to the motor to provide output indicative of a detected characteristic of the motor when the sensing arrangement is enabled, and a module coupled to the sensing arrangement to periodically enable the sensing arrangement while the motor is idle and detect potential unintended motion of the motor based on the output from the sensing arrangement while periodically enabling the sensing arrangement. In some embodiments, the motor includes a rotor configured such that its rotation provides translational displacement of a plunger in a fluid reservoir, and the sensing arrangement includes one or more sensors configured to provide output indicative of a detected magnetic field of the rotor magnet.
Abstract:
Apparatus are provided for infusion devices and related systems and operating methods. An exemplary system includes a motor, a sensing arrangement coupled to the motor to provide output indicative of a detected characteristic of the motor when the sensing arrangement is enabled, and a module coupled to the sensing arrangement to periodically enable the sensing arrangement while the motor is idle and detect potential unintended motion of the motor based on the output from the sensing arrangement while periodically enabling the sensing arrangement. In some embodiments, the motor includes a rotor configured such that its rotation provides translational displacement of a plunger in a fluid reservoir, and the sensing arrangement includes one or more sensors configured to provide output indicative of a detected magnetic field of the rotor magnet.
Abstract:
A linear motor (10), a linear compressor (100), a method of controlling a linear compressor (100), a cooling system (20) and a system of controlling a linear compressor (100) to operate a linear compressor (100) in resonance in it's the greatest possible efficiency throughout its operation are described. One of the ways of achieving these objectives is by means of a linear compressor (100) applicable to a cooling system (20), the linear compressor (100) comprising a piston (1) driven by a linear motor (10), the piston (1) having displacement range controlled by means of a controlled voltage (VM), the controlled voltage (VM) having a voltage frequency (φP) applied to the linear motor (10) and adjusted by a processing unit (22), the range of piston (1) displacement being dynamically controlled in function of a variable demand of the cooling system (20), the linear compressor (100) having a resonance frequency, the processing unit (22) adjusting the range of piston (1) displacement, so that the linear compressor (100) will be dynamically kept on resonance throughout the variations in demand of the cooling system (20).
Abstract:
Embodiments of the present invention provide pumps with features to reduce form factor and increase reliability and serviceability. Additionally, embodiments of the present invention provide features for gentle fluid handling characteristics. Embodiments of the present invention can include a pump having onboard electronics and features to prevent heat from the onboard electronics from degrading process fluid or otherwise negatively impacting pump performance. Embodiments may also include features for reducing the likelihood that fluid will enter an electronics housing.
Abstract:
A positive displacement pump is provided that includes a pump housing having a pump chamber; a plunger mounted in the pump housing for reciprocating motion in the pump chamber; a suction valve positioned to allow a fluid to enter the pump chamber upon movement of the plunger in a first direction; a discharge valve positioned to discharge the fluid from the pump chamber upon movement of the plunger in a second direction; and at least one sensor enclosed by the pump housing for measuring at least one pump condition parameter.
Abstract:
A linear motor (10), a linear compressor (100), a method of controlling a linear compressor (100), a cooling system (20) and a system of controlling a linear compressor (100) to operate a linear compressor (100) in resonance in it's the greatest possible efficiency throughout its operation are described. One of the ways of achieving these objectives is by means of a linear compressor (100) applicable to a cooling system (20), the linear compressor (100) comprising a piston (1) driven by a linear motor (10), the piston (1) having displacement range controlled by means of a controlled voltage (VM), the controlled voltage (VM) having a voltage frequency (φP) applied to the linear motor (10) and adjusted by a processing unit (22), the range of piston (1) displacement being dynamically controlled in function of a variable demand of the cooling system (20), the linear compressor (100) having a resonance frequency, the processing unit (22) adjusting the range of piston (1) displacement, so that the linear compressor (100) will be dynamically kept on resonance throughout the variations in demand of the cooling system (20).
Abstract:
Apparatus are provided for infusion devices and related systems and operating methods. An exemplary system includes a motor, a sensing arrangement coupled to the motor to provide output indicative of a detected characteristic of the motor when the sensing arrangement is enabled, and a module coupled to the sensing arrangement to periodically enable the sensing arrangement while the motor is idle and detect potential unintended motion of the motor based on the output from the sensing arrangement while periodically enabling the sensing arrangement. In some embodiments, the motor includes a rotor configured such that its rotation provides translational displacement of a plunger in a fluid reservoir, and the sensing arrangement includes one or more sensors configured to provide output indicative of a detected magnetic field of the rotor magnet.
Abstract:
A linear compressor is provided. The linear compressor may include a shell having a refrigerant inlet, a cylinder provided within the shell, a piston that reciprocates within the cylinder to compress a refrigerant, a motor assembly that provides a drive force to the piston, a support provided for the magnet assembly, to support an end of a permanent magnet, and a frame engaged with the cylinder to support the motor assembly, and that includes a contact to absorb impact when the piston collides against the support.