Abstract:
A flame detector includes a medium wavelength infrared bolometer having an array of pixel elements disposed within a housing. Optics supported by the housing and disposed with respect to the bolometer direct infrared radiation from a flame to the pixel elements of the array and direct radiation from a separate background object to the pixel elements of the array. Electronics are coupled to receive signals from the bolometer and programmed to track an intensity of radiation from the background object to monitor transmission of radiation through the optics.
Abstract:
Various embodiments of an ambient light sensor configured to determine the direction of a beam of light incident thereon are disclosed. In one embodiment, an ambient light sensor is provided that comprises a plurality of light detectors arranged in a spatial array upon a light sensing surface. Each of the light detectors in the array is configured to generate an analog output voltage in response to the beam of ambient light falling thereon. The amount of light incident on the individual light detectors in the spatial array varies according to the position of each such sensor with respect to direction of the beam of ambient light. An analog-to-digital converter (ADC) is operably coupled to the plurality of light detectors and is configured to receive the analog output signals generated thereby as inputs thereto, and to provide digital output values representative of the analog signals. Control logic circuitry is operably coupled to the ADC and configured to receive the digital output values therefrom, and is further configured to process such digital output values to determine the direction of the beam of light incident upon the spatial array.
Abstract:
There are provided an imaging apparatus and an electronic device having the same, and a method for determining a backlit condition, an exposure compensation method and an imaging method in the imaging apparatus. The imaging apparatus includes a body; an imaging unit installed in the body and configured to photograph an image in a first direction; an image processing unit configured to generate image data by processing the image; a light meter installed in the body and configured to measure light in a second direction corresponding to an incident direction of light different from an incident direction of light of the first direction; and a control unit configured to control first imaging unit to photograph the image at an exposure value calculated using a photometric value obtained by the light meter.
Abstract:
An apparatus using reconfigurable integrated sensor elements with an efficient energy harvesting capability is described. Each sensor element has sensing and energy harvesting mode. In the sensing mode, the sensor element measures an environmental characteristic by generating electrical charge and outputs a time-encoded signal indicative of the measurement. In the energy harvesting mode, the sensor element itself is used to harvest energy from ambient energy source and makes it available to other sensor elements or circuit components. The sensing element is switched from the sensing mode to the energy harvesting mode when the electrical charge reaches a predetermined threshold. An image sensor device using asynchronous readout for harvesting energy from incident light while generating images is also described.
Abstract:
An optical sensor for detecting motion or movement in an area of interest and a method of operation is provided. The system includes a CMOS sensor having an array of pixels that captures images in an area of interest. The system monitors the average pixel value for the array to define a first state. If the average pixel value changes beyond a defined threshold, the system defines a second state. For each change in state, a signal is generated. In one embodiment, the optical sensor is used with a meter having a dial with an indicator. The optical sensor generates a signal each time the indicator passes through the area of interest to allow for the remote monitoring of a consumable commodity.
Abstract:
In an illuminance sensor, a photoelectric converter (1) includes three photosensors (PS), and each photosensor (PS) outputs a current as a difference between photocurrents generated in two photodiodes (PDA, PDB) having different light reception characteristics. Ratios between light receiving areas of the two photodiodes (PDA, PDB) in the three photosensors (PS) are different from each other, and the sum of positive currents among output currents of the three photosensors (PS) is constant for a given illuminance, regardless of the type of light source. A computation control unit (7) obtains illuminance based on the sum of the positive currents among the output currents of the three photosensors (PS).
Abstract:
A radiation sensor includes first and second pixels with a radiation absorption filter positioned over the first pixel and an interference filter positioned over both the first and second pixels. The combined spectral response of the absorption filter and the first pixel has a first pixel pass-band and a first pixel stop-band. The spectral response of the interference filter has an interference filter pass-band which is substantially within the first pixel pass-band for radiation incident on the interference filter at a first angle of incidence, and substantially within the first pixel stop-band for radiation incident on the interference filter at a second angle of incidence greater than the first angle of incidence.
Abstract:
A pixel circuit for a depth sensor operating in a detection period and an output period in either a first operating mode (high incident light intensity) or a second operating mode (low incident light intensity). The pixel circuit includes a light receiving unit generating charge in response to the incident light, a signal generation unit accumulating charge in a FDN in response to a transmission signal, reset signal and selection signal during the detection period, and generating an analog signal having a level corresponding to a voltage apparent at the FDN during the output period, and a refresh transistor coupled between a supply voltage and the light receiving unit and discharging charge to the supply voltage in response to a refresh signal.
Abstract:
Described herein is an improved sensing system (30) and its method of operation. The system (30) includes a camera (16) for viewing an external scene, the camera comprising one or more detector(s) and has a field of view (40) which overlaps with the path (32) of a pulsed laser (12). The laser path (32) and radiation from the scene viewed (40) share a beamsplitter (36) and a window (38). In order to substantially reduce back-scattered radiation from the laser path (32) affecting operation of the detector(s) of the camera (16), the detector(s) is (are) switched in accordance with the operation of the laser (12) to be “off” or non-receiving when the laser (12) is “on” or firing.
Abstract:
A system and method for adjusting the LED current of an optical sensor that does not decrease the effectiveness of the optical sensor or the length of its operating life, or significantly increase the cost due to hardware requirements. The LED current of an optical sensor is adjusted using a high frequency pulse-width modulated signal generated from a microcontroller. Based on feedback provided by the photo-detector, the duty cycle of the signal can be adjusted by the microcontroller. The signal passes through a low pass filter which averages the modulated signal into a DC voltage, which is then used to control a current amplifier circuit that provides current to the LED of the optical sensor. This adjustability enables the system to compensate for variations in sensor LED's and the LED brightness reduction to due aging and/or build-up of contaminants on the photo-detector and/or LED.