Abstract:
A gas sensor (20) comprising a substrate (231); an objective (211) situated on the substrate (231), adapted to collect a light beam (212, 213) emitted by a light source (210); an eyepiece (250) situated on the substrate (231), adapted to collect an incident light beam to focus it on a detector (251); return reflective surfaces (281, 282), situated facing said substrate; and at least one field lens (221), arranged on an intermediate reflective surface (222) formed on the substrate (231), and adapted to deviate the rays (213) of the light beam emitted by the light source, to bring them closer to the optical axis of the eyepiece (250).
Abstract:
The present invention provides a microfluidic system, device, and kit for particle analysis. In one example, the device includes a fluid channel for spacing the particles, an excitation waveguide to guide an excitation beam from a source to the fluid channel, and an excitation lens to focus the excitation beam to a width less than the spacing of the particles in the fluid channel. The device also includes a detection lens to guide light transmitted from the channel along a number of paths, axial and scatter light waveguide to receive light guided by the detection lens, a detector to receive transmitted light from the waveguides and generate a detection signal, and a processor configured to receive the detection signal and determine characteristic features of each of the particles based on the detection signal.
Abstract:
A display method for video conferencing and an associated video conferencing system are provided. The video conferencing system includes a display, an image capturing unit, and a network interface unit. The method includes the steps of: utilizing the image capturing unit to capture images of a local user in a video conference; performing foreground segmentation on the captured images to obtain a foreground object; flipping the foreground object horizontally; identifying a human face from the flipped foreground object and correcting a facing angle of the human face; determining interaction data from the local user on the display; encoding the interaction data and the flipped foreground object into an interaction stream and a video stream, respectively; packing the interaction stream and the video stream into an output stream; and transmitting the output stream to a remote user of the video conference through the network interface unit.
Abstract:
A method and system for optically inspecting the ends of a manufactured part at a single inspection station having a measurement axis are provided. The system includes a fixture assembly having a rotatable first fixturing component and a rotatable second fixturing component mating with and removably connected to the first fixturing component to transmit torque from the first fixturing component to the second fixturing component. The second fixturing component has a device for holding the part in a generally horizontal orientation and permit rotation of the horizontally held part between first and second angular positions about the measurement axis. The system also includes an actuator assembly, an illumination device, a lens and detector assembly and at least one processor to process electrical signals generated by the lens and detector assembly to determine at least one geometric dimension or any visual defects at the ends of the part.
Abstract:
Systems configured to provide illumination for wafer inspection performed by a wafer inspection tool are provided. One system includes one or more pupil lenses configured to focus a first far field pattern having a shape different than a shape of light generated by a light source. The system also includes a field lens array positioned between the one or more pupil lenses and an aperture stop. In addition, the system includes a lens group configured to focus a second far field pattern generated by the field lens array to a back focal plane of the lens group. The back focal plane of the lens group is a field plane of a wafer inspection tool at which a wafer to be inspected is placed during wafer inspection.
Abstract:
A reflection type optical sensor that detect a surface condition of a moving body and that is used for an image generation apparatus which forms images on a recording media includes a light-emitting device which has a plurality of light emitter systems including at least two light-emitting members and a light-emitting optical system having a plurality of light-emitting lenses corresponding to a plurality of the light emitter systems and guiding light emitted from the light emitter systems to the moving body and a light-receiving device which has a light receiver system including at least two light-receiving members and a light-receiving optical system having light-receiving lenses corresponding to the at least two light-receiving members and guiding light reflected by the moving body to the light receiver system. The image generation apparatus has further a surface condition judging device in addition to the reflection type optical sensor.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with an excitation beam generated by a light source. A collimating lens can be disposed along a beam path between the light source and the reaction regions to form bundles of collimated excitation beams, wherein each bundle corresponds to a respective reaction region. Methods of analysis using the optical instrument are also provided.
Abstract:
An imaging assembly and processing system that includes a sample platform having a target region which can hold a sample, where the sample can be marked with fluorescent or phosphorescent markers. The imaging assembly can have an excitation light module proximate to the sample platform that emits light to excite the markers, and a lens module positioned to receive emission light from excited markers in target region. At least one series filter assembly or interference filter can be arranged in front of, behind, or both in front of and behind the lens module. The assembly includes a light sensor and a processor and imaging module configured to process data captured by the light sensor. Images of the sample are generated based on the emission light from the sample that transmit through and are filtered by the lens assembly and series filter assembly or interference filter.
Abstract:
An apparatus configured to obtain a physical property of an object by time-domain spectroscopy includes: a detection unit; a delay unit configured to adjust a time difference between generation and detection; a shaping unit configured to collect the electromagnetic wave pulses; a waveform obtaining unit configured to construct a time waveform of the electromagnetic wave pulses; and a collecting position adjusting unit configured to adjust a collecting position. When the collecting position is moved, an amount of adjustment when the collecting position matches first and second reflection portions, respectively, of the object, and a difference by the delay unit required for detecting first and second pulses of the time waveform are obtained, and from an amount of change of the amount of adjustment and the difference, a thickness and a refractive index of a region between the first and second reflection portions of the object are calculated.
Abstract:
A high sensitivity image sensor comprises an epitaxial layer of silicon that is intrinsic or lightly p doped (such as a doping level less than about 1013 cm−3). CMOS or CCD circuits are fabricated on the front-side of the epitaxial layer. Epitaxial p and n type layers are grown on the backside of the epitaxial layer. A pure boron layer is deposited on the n-type epitaxial layer. Some boron is driven a few nm into the n-type epitaxial layer from the backside during the boron deposition process. An anti-reflection coating may be applied to the pure boron layer. During operation of the sensor a negative bias voltage of several tens to a few hundred volts is applied to the boron layer to accelerate photo-electrons away from the backside surface and create additional electrons by an avalanche effect. Grounded p-wells protect active circuits as needed from the reversed biased epitaxial layer.