Abstract:
The invention relates to an electron antenna as an anode for a micro- or nano-focus X-ray generation comprising an antenna base and an antenna element arranged on the antenna base such that the antenna element protrudes from a front surface of the antenna base, wherein the antenna is arranged to guide and attract the electrons in its vicinity to the top the antenna element.
Abstract:
An electron emitter assembly includes a plurality of electron emitters, and a removable structure connected to, and fixing a positional relationship among, individual ones of the plurality of electron emitters. A method of assembling an electron emitter assembly includes connecting individual ones of a plurality of electron emitters together with a removable structure, and fixing a positional relationship among the individual ones of the plurality of electron emitters.
Abstract:
The present invention relates to a rotating anode (100) comprising: an outer ring compound (6) comprising a first carbon material with a first material property and carbon fibers substantially aligned to a contour of the outer ring compound (6), wherein the outer ring compound (6) is configured to mechanically stabilize the rotating anode (100); an intermediate ring compound (5) comprising a second carbon material with a second material property differing from the first material property; a inner disc compound (2) comprising a layered fiber structure and a third carbon material with a third material property differing from the first and the second material property, wherein the inner disc compound (2) and the intermediate ring compound (5) are configured to provide a thermally conductive interface between the intermediate ring compound (5) and the inner disc compound (2); and an interface compound (3) comprising a metallic or a semi-metallic material, wherein the interface compound is coupled to the intermediate ring compound (5) and the inner disc compound (2).
Abstract:
Systems and methods are provided for generating X-ray pulses during X-ray imaging. A high voltage of an X-ray tube is automatically switched off. The tube voltage decays and upon reaching a predefined threshold value of the tube voltage or a predefined waiting time after switching off the high voltage, a grating voltage of a grating arranged between an emitter and an anode of the X-ray tube is automatically switched on. No electrons reach the anode from the emitter, and the tube current drops to the value zero.
Abstract:
A thermionic emission device includes an indirectly heatable main emitter, which is constructed as a flat emitter with a main emission surface, and at least one connectible heat emitter with a heat emission surface. The heat emission surface is disposed at a predefinable distance from the main emission surface. The main emission surface can be asymmetrically heated by the heat emission surface. In the operating state, the main emitter is at a main potential and the heat emitter is at a heating potential which differs from the main potential. An x-ray tube with the thermionic emission device has a longer service life with a consistent image quality.
Abstract:
Provided is an X-ray generator having: an anode that faces a cathode which generates electrons; a plurality of X-ray generation zones; a casing housing the cathode and the anode; an anode support body for supporting the anode; an air cylinder for producing advancing and retreating movement of the anode support body with respect to the casing; and a stopper device that halts the movement of the anode support body when the anode support body moves in a direction approaching the casing. The stopper device has a rotating plate equipped with a section that enters and exits from between the anode support body and the casing due to rotation, a motor for driving the same, and a plurality of stop members provided in a peripheral section of the rotating plate and having mutually different heights.
Abstract:
A rotating x-ray anode has an annular focal track. The surface of the focal track has a directed ground structure. Over the circumference of the annular focal track and over the radial extent of the focal track, the alignment of the ground structure is inclined relative to a tangential reference direction in the respective surface portion in each case by an angle that lies in the range from 15°, including, up to and including 90°. A corresponding method for producing a rotating x-ray anode is described.
Abstract:
An x-ray tube for generating a sweeping x-ray beam. A cathode is disposed within a vacuum enclosure and emits a beam of electrons attracted toward a rotating anode. The rotating anode is adapted for rotation with respect to the vacuum enclosure about an axis of rotation. At least one collimator opening or aperture corotates with the rotating anode within the vacuum enclosure, such that a swept x-ray beam is emitted.
Abstract:
A high-temperature-resistant composite body is formed by joining over an area of a first, nonmetallic section via a bonding solder layer to a second, metallic section composed of Mo, an Mo-based alloy, W or a W-based alloy. A first arrangement composed of the first section, a first Zr solder and an intermediate layer is firstly soldered together in a first soldering step. A second arrangement of the resulting partial composite body, a second solder adjoining the intermediate layer and the second section is subsequently soldered together in a second soldering step. The intermediate layer at least 90 atom % of at least one of the elements Ta, Nb, W. The second solder is formed by precisely one material selected from Ti, Ti-based solder combination, V-based solder combination, Zr or Zr-based solder combination and it melts at a lower temperature than the first Zr solder in the second arrangement.
Abstract:
An x-ray tube having a coated x-ray tube frame inner surface and a coated anode assembly is provided. The x-ray tube includes an x-ray tube frame in which an anode assembly is disposed therein. A cathode assembly is also disposed within the x-ray tube frame that emits an electron beam to strike a target surface of the anode assembly and form x-rays. A plasma-sprayed tungsten oxide coating is formed on an inner surface of the x-ray tube frame and on the anode assembly to dissipate heat created by the electron beam.