Abstract:
A wireless communication system has a transmitting device and a receiving device that perform communication by using a multi-carrier signal wherein the receiving device includes a quality generating unit generating each piece of receiving quality information on each pilot channel for transmitting each pilot signal, a determining unit determining the number of pilot channels needed in the multi-carrier signal based on the receiving quality information, and a notifying unit transmitting a signal requesting the determined number of pilot channels to the transmitting device, and the transmitting device includes an allocation unit determining allocations of pilot signals in the direction of the time axis and in the direction of the frequency axis, corresponding to a requested number of pilot channels, and a transmitting unit transmitting the multi-carrier signal having the determined pilot signal allocations.
Abstract:
Overhead of signaling for retransmission control using a multiple codeword is decreased and throughput is improved. A radio communication apparatus performs data transmission by using the multiple codeword, and includes a reception device having a MIMO demodulation section 15 for demodulating data transmitted by the multiple codeword and an ACK/NACK generation section 21 for generating an ACK/NACK signal corresponding to the demodulation result of the demodulated data of respective codewords. The ACK/NACK generation section 21 allocates less resource to a signal corresponding to a low-order code word having a lower quality, and allocates more resource to a signal for a high-order codeword having a higher quality, thereby generating the ACK/NACK signal.
Abstract:
A method and apparatus for transmitting and receiving a SectorParameters message in an Active state is provided. The method comprises transmitting a SectorParameters message over a Forward Traffic Channel Medium Access Control(MAC) in superframe number wherein the superframe number is divisible by NOMPSectorParameters, setting a SectorSignature field of an ExtendedChannelInfo message to the SectorSignature field of a next SectorParameters message, determining if a multi-carrier mode is MultiCarrierOn and transmitting the SectorParameters message on each carrier.
Abstract:
A base station includes a scheduler configured to perform frequency scheduling for each subframe; a control channel generating unit configured to generate a control channel including common control information to be mapped to radio resources distributed across a system frequency band and specific control information to be mapped to one or more resource blocks allocated to each selected user device; and a transmission signal generating unit configured to generate a transmission signal by time-division-multiplexing the common control information and the specific control information according to scheduling information from the scheduler. The common control information includes a format indicator representing one of preset options that indicates the number of symbols occupied by the common control information in one subframe. The common control information includes information units with a predetermined data size. The number of the information units is less than or equal to a specified multiplicity included in broadcast information.
Abstract:
Feedback information including a transmission quality of a packet transmitted from a transmitting device to a receiving device is received from the receiving device and the transmission quality included in the feedback information is revised down, to be transferred to the transmitting device, based on information of resource consumed for maintaining a wireless link included in a path to the receiving device. The above revising down is executed if it is found that the information of resource consumed reaches a predetermined threshold or is not executed unless it is found otherwise. The information of resource includes, for example, the number of retransmission times of a packet for a predetermined period of time, a transmission power level or a code length of an error correcting code.
Abstract:
A communication apparatus includes a judgment section which judges the state of receiving a downlink control channel from a base station, and a power control section which does not assign transmission power to at least the top one time block in a frame transmitted to be by an uplink control channel, if it is judged by the judgment section that the downlink control channel has not been received.
Abstract:
A method and apparatus for transmitting a ChannelMeasurementReport message in a wireless communication system, comprising generating a ChannelMeasurementReport message comprising a 8 bit MessageID field, a 12 bit PilotPN field that indicates the PilotPN of a sector for which a measurement was performed, a 2 bit CarrieriID field that indicates a carrier on which the measurements are performed, a 40 bit StartPHYFrameNumber field that indicates a frame number of a PHYFrame where an access terminal made a first measurement reported in the message, a 8 bit MeasurementInterval field that indicates a number of PHYFrames between measurements made by the access terminal, and a 8 bit NumMeasurements field that indicates number of measurements included in the message and transmitting the ChannelMeasurementReport message over a communication link. A method and apparatus is also provided for receiving and processing the ChannelMeasurementReport message.
Abstract:
A method for specifying a transport block-to-codeword mapping relationship and a method for transmitting a downlink signal using the same are described. If a swap flag has a first logic value, a first transport block is mapped to a first codeword and a second transport block is mapped to a second codeword. If the swap flag has a second logic value, the first transport block is mapped to the second codeword and the second transport block is mapped to the first codeword. If the size of any one of two transport blocks is 0, the swap flag is not used.
Abstract:
A power controlling apparatus and method in a mobile communication system. A receiver in a mobile station multiplexes the frame reception result indicator bits for at least two traffic channels received from a transmitter in a base station, inserts the multiplexed frame reception result indicator bits in a pilot signal bit by bit, and transmits the reverse frame. Then, the transmitter extracts the pilot signal from the reverse frame, demultiplexes the frame reception result indicator bits, and performs a power control on the traffic channels based on the values of the frame reception result indicator bits.
Abstract:
In a flexible layer one (403) of a GERAN transmitter device, a TFCI, which indicates a particular combination of cyclic redundancy check, channel coding and rate matching, is generated by a TFCI generating process (412) using information from the medium access control layer. The TFCI is coded by a coding process (413), and inserted into the data stream by a TFCI insertion process (414). Each code has more bits than the corresponding TFCI, and identifies uniquely the TFCI. The coded TFCI is spread across the pre-interleaved block with portions placed in fixed positions in each burst. Interleaving is then performed by an interleaver (411). The coded TFCI used with a half-rate channel is the central segment of the coded TFCI used in the corresponding full-rate channel. The additional loss is so small as to be insignificant, but the FER performance is significantly improved, compared to using the full-rate codes, as a result of the increased payload of the content data bits. In half-rate mode, the amount of coded TFCI data gives rise to a ratio of the performance of the coding of the transport format combination data to the performance of the coded content data which is at a similar level to the ratio in the full-rate mode.