Abstract:
A method of treating a laser-activated thermoplastic substrate having a metal compound dispersed therein is described. The substrate is contacted with an aqueous composition comprising: (i) a thiol functional organic compound; (ii) an ethoxylated alcohol surfactant; and (iii) xanthan gum. By use of the treatment composition, when the substrate is subsequently laser-activated and plated by electroless plating, extraneous plating of the substrate is substantially eliminated.
Abstract:
A method for selective metallization of a surface of a polymer article is provided. The polymer article contains a base polymer and at least one metal compound dispersed in the base polymer. The method includes gasifying at least a part of a surface of the polymer article by irradiating the surface with an energy source, and forming at least one metal layer on the surface of the polymer article by chemical plating. The metal compound contains a tin oxide doped with at least one doping element selected from a group including: V, Sb, In, and Mo.
Abstract:
A plug for an electrical plug-type connector includes a plurality of plug contacts, which are electrically connected or connectable to a corresponding number of connecting elements, for example insulation displacement contacts, clamping contacts or possibly also soldered joints, each for connecting one electrical cable core. Per plug contact, one conductor is formed as a conductor track which is grown three-dimensionally on the surface of a plug body in the form of a cast plastics part and adheres there, and which both forms the plug contact and electrically connects the plug contact to the connecting element.
Abstract:
A photopatternable structure (10) comprises an optically transparent substrate (12) having first and second faces (14, 16), coated respectively with first and second photosensitive materials (18, 20), the coated substrate being opaque to electromagnetic radiation of one or more wavelengths to which the photosensitive materials are sensitive. In use, the faces (14, 16) are exposed (sequentially or simultaneously) to curing radiation to which the photosensitive materials are sensitive and to which the coated substrate is opaque, resulting in two sided photopatterning without through -cure occurring.
Abstract:
An electronic device housing includes a plastic substrate. The plastic substrate includes a first surface. The electronic device housing further includes an activating layer formed on the first surface. The activating layer contains metal powder. The activating layer defines a recessed portion. Some of the metal powder is partially exposed on the surface of the recessed portion. Some of metal powder is partially inserted into the plastic substrate corresponding to the recessed portion. The electronic device housing further includes an antenna layer formed on the recessed portion. The antenna layer is a metal layer. A method for manufacturing the electronic device housing is also disclosed.
Abstract:
A method for selectively metallizing a substrate having a significant content of a plastics material includes ablating a layer of the substrate close to a surface of the substrate in a region of the substrate to be metallized so as to provide access to an additive having at least one compound from a substance family of aluminosilicates that is incorporated in the plastics material and to open one of a pore or a pore structure of the aluminosilicates in the region of the substrate to be metallized. The substrate is metallized with no external current starting inside the pore or the pore structure so as to incorporate a precious metal in the substrate and then at an outer edge region of the pores so as to form a planar metallization layer on the surface of the substrate
Abstract:
The invention is directed to a method for preparing a substrate with an electrically conductive pattern for an electric circuit, to the substrate with the electrically conductive pattern, and to a device comprising the substrate with the electrically conductive pattern.The method of the invention comprises (a) providing an electrically insulating or semiconductive substrate, which substrate comprises a distribution of nanoparticles of a first metal or alloy thereof; (b) applying a layer of an inhibiting material onto said substrate, and locally removing or deactivating, light-induced, thermally, chemically and/or electrochemically, the layer of inhibiting material and thereby exposing at least part of the first metal or alloy thereof so as to obtain a pattern for an electric circuit; (c) depositing by means of an electroless process a layer of a second metal or alloy thereof on the exposed part of the first metal or alloy thereof present in the substrate as obtained in step (b), whereby inhibiting material that is still present on the substrate after step (b) locally inhibits the second metal or alloy thereof to be deposited on the first metal or alloy thereof, ensuring that the second metal or alloy thereof will selectively be deposited on the exposed part of the first metal or alloy thereof as obtained in step (b).
Abstract:
A method of treating a laser-activated thermoplastic substrate having a metal compound dispersed therein is described. The substrate is contacted with an aqueous composition comprising: (i) a thiol functional organic compound; (ii) an ethoxylated alcohol surfactant; and (iii) xanthan gum. By use of the treatment composition, when the substrate is subsequently laser-activated and plated by electroless plating, extraneous plating of the substrate is substantially eliminated.
Abstract:
A method for forming a circuit board structure of composite material is disclosed. First, a composite material structure including a substrate and a composite material dielectric layer is provided. The composite material dielectric layer includes a catalyst dielectric layer contacting the substrate and at least one sacrificial layer contacting the catalyst dielectric layer. The sacrificial layer is insoluble in water. Later, the composite material dielectric layer is patterned and simultaneously catalyst particles are activated. Then, a conductive layer is formed on the activated catalyst particles. Afterwards, at least one sacrificial layer is removed.
Abstract:
An electronic type substrate having 40 to 97 weight-percent polymer and 3 to 60 weight-percent auto-catalytic crystalline filler. An interconnect or a conductor trace is created in the substrate by: i. drilling or ablating with a high energy electromagnetic source, such as a laser, thereby selectively activating the multi cation crystal filler along the surface created by the drilling or ablating step; and ii. metalizing by electroless and/or electrolytic plating into the drilled or ablated portion of the substrate, where the metal layer is formed in a contacting relationship with the activated multi cation crystal filler at the interconnect boundary without a need for a separate metallization seed layer or pre-dip.