Abstract:
To provide a printed circuit board in which two wiring patterns having a width of 0.15 mm, which are to be passed through the area of the printed circuit board for mounting a 1608-size chip component, are formed by printing, thereby increasing the circuit packaging density, reducing the production cost and suppressing the yield reduction. In a range in which the distance between two lands 12 to which a surface-mount chip component is electrically connected (the distance between points 17a and 17b) allows formation of two wiring patterns having a line width of 0.25 mm (the distance is equal to or more than 1.25 mm), wiring patterns 15 and 16 having a line width of 0.25 mm are formed. In this way, parts of the wiring patterns having a line width of 0.15 mm (narrow parts 15a and 16a) are minimized, and thus, the reduction in production yield is suppressed.
Abstract:
In a capacitor-mounted wiring board, a plurality of wiring layers each patterned in a required shape are stacked with insulating layers interposed therebetween and are connected to each other via conductors formed to pierce the insulating layers in the direction of thickness. A decoupling capacitor is electrically connected to a wiring layer used as a power supply line or a ground line in the vicinity of the wiring layer, and mounted such that, when a current is passed through the capacitor, the direction of the current is reversed to that of the current flowing through the relevant wiring layer.
Abstract:
In one embodiment, an integrated circuit package includes a die associated with an integrated circuit and a die pad. The die has a bottom surface, and the pad has a top surface opposite the bottom surface of the die. Two or more bump pad traces are each coupled to the top surface of the pad, and one or more other traces are each coupled to the top surface of the pad in a corresponding inter-bump pad region between adjacent bump pad traces. A number of solder bumps each couple the die to the pad at a corresponding bump pad trace to provide electrical connectivity between circuitry associated with the die and circuitry associated with the die pad. Each inter-bump pad region is free from any solder mask material deposited to control collapse of the die towards the pad during a reflow process for bonding the die to the pad using the bumps, a supporting structure that contacts the die during the reflow process having been used instead.
Abstract:
A semiconductor package provided with an interconnection layer including an interconnection pattern and pad formed on an insulating substrate or insulating layer, a protective layer covering the interconnection layer except at the portion of the pad and the insulating substrate or insulating layer, and an external connection terminal bonded with the pad exposed from the protective layer, the pad to which the external connection terminal is bonded being comprised of a plurality of pad segments, sufficient space being opened for passing an interconnection between pad segments, and the pad segments being comprised of at least one pad segment connected to an interconnection and other pad segments not connected to interconnections.
Abstract:
A fan housing of a fan unit includes a housing wall standing from the surface of a printed circuit board. The printed circuit board serves to establish the fan housing in cooperation with the housing wall. The fan housing further includes a ceiling wall connected to the housing wall. The ceiling wall extends along a datum plane parallel to the surface of the printed circuit board. A high speed airflow can be generated within the fan housing. The airflow promotes the heat radiation from the printed circuit board. An electrically conductive wiring pattern extending over the surface of the printed circuit board may further promote the heat radiation from the printed circuit board.
Abstract:
A printed wiring board includes a substrate having a packaging surface and at least one pad mounted on the packaging surface. The pad has an area to solder a circuit component. At least one connection part is placed in the area of the pad. The connection part is electrically insulated from the pad and connected to a circuit electrically different from the pad.
Abstract:
The invention provides a method and device for building one or more passive components into a chip scale package. The method includes the steps of selecting a passive component having a terminal pitch that is a multiple of the package ball pitch of a chip scale package and mounting the selected passive component terminals to ball sites of the package. A preferred embodiment of the invention uses a single metal layer polyamide tape as the substrate of the package. Additional preferred embodiments of the invention are disclosed in which the terminal pitch multiple of the package ball pitch is one or two. Devices corresponding to the disclosed methods are also disclosed.
Abstract:
In a wiring board having a mounting region on which an integrated circuit having a plurality of terminals is mounted, and having a plurality of substrate-side wiring lines to be connected to the integrated circuit formed thereon, a conductor pattern is formed to extend in a substantially radial form from a prescribed point in the mounting region to reach two or more of the substrate-side wiring lines to be grounded.
Abstract:
The proposal relates to a device for protecting an electrical and/or electronic component, arranged on a carrier substrate, from electrostatic discharges, an overvoltage occurring in the case of discharge at a carrier-substrate contact element connected to the component being diverted to a ground connection, bypassing the component. It is proposed that the protective device include a first electroconductive structure conductively connected to the jeopardized contact element, and a second electroconductive structure arranged adjacent to the first structure on the carrier substrate and conductively connected to the ground connection. Mutually facing sections of the electroconductive structures are set apart spatially from one another by a defined gap in such a way that an overvoltage transmitted to the contact element is transferred by a spark discharge in the gap from the section of the first electroconductive structure to the section of the second electroconductive structure, and is diverted to the ground connection.
Abstract:
Plural pins are arranged on a printed circuit board to form a generally square shape and are electrically connected to terminals of a QFP-IC. In the pins, a pin disposed at a corner portion of the generally square shape is used as a GND terminal, and a pin adjoining the GND terminal is used as a source terminal. A conductive region is provided to extend radially from the corner portion, and is electrically connected to the ground terminal. Further, another conductive region is provided in the generally square shape and is electrically connected to the radial conductive region.