Abstract:
A method, apparatus, and set of compositions are disclosed for calibrating a bio-photonic scanner. The scanner detects selected molecular structures of tissues, nondestructively, in vivo. The apparatus may include a computer, including processor and memory connecting to the scanner, including an illuminator to direct light nondestructively onto tissue in vivo, a detector to detect an intensity of a radiant response of the tissue to the light, and a probe to direct light onto the subject and receive a radiant response back into the detector. The apparatus is calibrated using a synthetic material to mimic the radiant response of live tissue, correcting for background fluorescence and elastic scattering. Dopants in a matrix of synthetic material mimic selected molecular structures of tissue. Matrix materials include a dilatant compound, and dopants include biological materials as well as K-type polarizing film powdered and mixed.
Abstract:
An imaging spectrometric instrument is disclosed. This instrument can include an imaging detector and one or more calibration standards having different optical properties. Portions of one or more actuators can move the calibration standards between the imaging detector and a sample. This instrument can use the actuator(s) to acquire an image of a sample and measure light and dark reference calibration values in quick succession at a given wavelength, before the instrument is tuned to another wavelength.
Abstract:
A vacuum assisted disc clamping device provides a number of fixture rings preferably concentrically stacked on a fixture body that is moveable in fixture ring stacking direction and actuated by a wedge drive to compensate for varying fixture levels associated with the individual fixture rings and disc standards. Each fixture ring includes a planar flange with a vacuum groove and a central conical portion that rises above the planar flange. The conical portion is defined with a diameter and cone angle such that a disc of corresponding dimensional standard may be readily placed on the fitting fixture ring with the disc bottom being sucked onto the planar flange while the disc hole centers on the conical portion.
Abstract:
A system that calibrates instruments for measuring the light or air permeability of a material, and includes a calibration target which can be used for calibration of either light-based or air-based instruments. The calibration target simulates the material whose permeability is being measured, and includes a plate having multiple, angled or parallel rows of perforations provided therethrough. The permeability measuring instrument measures the permeability of the calibration target, and compares the measured permeability with a predetermined permeability of the calibration target and calibrates the permeability measuring instrument based upon the comparison.
Abstract:
An apparatus and related method for optical calibration of spectrophotometers is described. The apparatus is a calibration plate including one or more cuvettes filled with solutions of interest. The cuvettes are sealed to prevent evaporation. The cuvettes also possess a compressible component to allow for expansion of the solution and a bubble control apparatus to ensure that the compressible component does not intersect the beam path. A piece of neutral density glass is optionally included in the apparatus to track optical changes of the solutions over time.
Abstract:
An external calibration system for a photo multiplier tube is described. The calibration system uses a light emitting diode and a photo cell wherein the diode is domed shaped. The light sensitive face of the photo multiplier tube is contained in the plane disposed at an acute angle to the longitudinal axis of the light emitting diode, and the photo cell is mounted substantially perpendicular to the longitudinal axis. A source of electrical energy then illuminates the light emitting diode over a range from, for example, 0 to 5 volts to generate light of known intensity and the light being generated is simultaneously measured by the photo cell and the light sensitive face of the photo multiplier tube. A feedback circuit is provided and associated circuitry so that a number of readings can be taken over a wide variety of light intensities to generate a calibration for the photo multiplier tube.
Abstract:
An energy beam threat discrimination system (110) adapted for use with laser beam energy (134). The system (110) includes an first detector (114) for detecting a first laser signal. A second detector (112) detects a coherent laser signal. A timer circuit (124, 126) establishes a time interval between the detection of the first laser signal and the detection of the coherent laser signal and provides an output (130) in response thereto. A control circuit (128, 130) determines, based on the output (130), if the first laser signal and/or the second laser signal is threatening. In a specific embodiment, the first detector (114) provides an event detection flag (118) as an output in response to the detection of a first laser signal. The first detector (114) includes a high sensitivity laser light detector (142), a pre-amplifier (144), and an analog threshold circuit (146). The coherent detector (112) provides a coherent detection flag (116) as an output in response to the detection of the coherent laser signal. The timing circuit (124, 126) receives the event detection flag (118) as input and includes a digital clock circuit (124) that starts a timer (126) upon receipt of the event detection flag (118). The control circuit (128) includes a digital comparator circuit (128) in communication with the timing circuit (124, 126), and receives the coherent detection flag (116) as input. The digital comparator circuit (128) is activated by the receipt of the coherent detection flag (116) which triggers a comparison between the output (130) of the timer circuit (124, 126) and a time threshold (131) and provides a reflection signal output indicating if the laser signal is a potential threat or not. The time threshold (131) is the maximum time value allowable for the output (130) for determining that the laser signal is a potential threat and is approximately 10 nanoseconds. Alternatively, the time threshold is the maximum time value allowable for the output (130) for determining that the laser signal is not a potential threat and is approximately 40 microseconds.
Abstract:
A method and an apparatus for compensating illuminance error of a light source is adapted to be used in a transmission type scanner and utilizes the light signal directly transmitted from the light source to an image pickup device of the scanner without passing through any scanned object as an illuminance calibration reference to compensating illuminance error of the light source. The calibration light signal can be transmitted from the light source to the image pickup device through a light transmission region arranged beside a scanning region.
Abstract:
Improved apparatus and method for selectively monitoring the light intensity emitted from an oil-burner flame for purposes of determining when the burner is in need of preventative maintenance. The apparatus features a monitoring system including: a sensor for detecting burner, flame-light intensity; a comparator for comparing the light intensity sensed to predetermined upper and lower limits; a display for indicating whether the burner is operating acceptably or whether it requires maintenance; and a discriminator for selectively coupling out-of-range, intensity indications representative of a need for maintenance to the display. The discriminator includes measurement-threshold circuitry for determining whether the burner has successfully ignited and whether the flame generated has been sustained long enough to assure thermal stabilization. Additionally, the discriminator includes gating circuitry for passing out-of-range, intensity measurements to the display elements only when predetermined, measurement-threshold conditions have been satisfied. The method features steps for: continuously sensing burner, flame-light intensity; comparing sensed, flame-light intensity to predetermined range limits; and selectively coupling out-of-range, intensity indications to a display for indicating the need for burner maintenance.
Abstract:
An optical examination apparatus for optically examining density, distribution, etc. of oxygen in an object to be examined such as organic tissue like brain tissue, of man or animal compressing a light source, an optical fibre bundle having one end on which light emitted from the light source is incident and which is divided at the other end into a first and second branch with a predetermined ratio of division, transmitted and scattered light detection means for detecting light is emitted from the first branch of the fibre bundle and transmitted through and scattered by the object to be examined, monitoring light detection means for detecting monitoring light emitted from the second branch fibre bundle, normalization means for normalizing an output of the transmitted and scattered light detected means on the basis of an output from the monitoring light detection means, representative sampling means for ensuring that the light output from the second branch fibre bundle is representative of that output by the light source. The representative sampling means may be provided by distributing the optical fibres forming the second branch fibre bundle uniformly over the one end of the optical fibre bundle or may comprise a mode scrambler interposed between the one end of the optical fibre bundle and the light source to distribute light from the light source over the whole fibre bundle.