Abstract:
A heterodyne optical spectrum analyzer (10) is configured for analyzing spectral information of an optical input signal (15). The analyzer (10) comprises a local oscillator source (20) configured for generating an optical local oscillator signal (38). An optical mixer (25) is configured for receiving the input signal (15) and the local oscillator signal (38), and for outputting a plurality of different combined optical signals (50), each combined optical signal (50) being derived from the input signal (15) and the local oscillator signal (38). An opto-electrical receiver (30) having a plurality of inputs (52) is configured for receiving the combined optical signals (50) and for providing an opto-electrical conversion thereof, and an output (54) for outputting electrical signals representing the received combined optical signals (50). A signal processor (35) is configured for deriving spectral information of the input signal (15) by analyzing the electrical signals. The optical mixer (25) is configured for deriving a plurality of polarization diverse signals from the input signal (15), each polarization diverse signal having a different state of polarization, and deriving a set of balanced quadrature signals for each polarization diverse signal by combining each polarization diverse signal with a signal derived from the local oscillator signal (38). The derived sets of balanced quadrature signals represent the plurality of combined optical signals (50).
Abstract:
A circular dichroism (CD) spectrometer includes an alignment mechanism that automatically adjusts the elements thereof at appropriate positions. The spectrometer has a focusing-lens position-and-orientation adjustment mechanism which adjusts the position and the orientation of the detector-side focusing lens. It also has a detector rotation mechanism which adjusts the orientation of the detector. Firstly, a control PC monitors the CD spectrum of D form of optical enantiomers, and the adjustment mechanism adjusts the focusing lens such that the monitored CD spectrum matches the reference spectrum related to the D form. Next, the control PC moniters CD spectrum of L form of optical enantiomers, and the adjustment mechanism adjusts the focusing lens such that the monitored CD spectrum of the D and L forms become symmetrical. And, the rotation mechanism adjusts the orientation of the detector such that the intensity of the detector signal is maximized.
Abstract:
A system, apparatus, and method of generating Stokes vectors, a Mueller matrix, and polarized scattering from an aerosol aggregate includes providing an incident infrared laser beam; causing the incident infrared laser beam to be polarization-modulated using variable stress/strain birefringence imposed on a ZnSe crystal; defining a Stokes vector associated with the incident infrared laser beam; scattering the incident infrared laser beam from an aggregate aerosol comprising interferents and analyte particles; producing a scattered-beam reactant Stokes vector by causing the scattered incident infrared laser beam to be polarization-modulated; generating a Mueller matrix by taking a transformation of the Stokes vector; and identifying the analyte using the Mueller matrix. The Mueller matrix may comprise M-elements that are functions of a wavelength of the infrared laser beam, backsattering orientation of the infrared laser beam, and a shape and size of the interferents and analyte particles.
Abstract:
A system (40) for diagnosis and staging of early stages of cancer in the tissue of a patient is provided. The system—is configured to combine information from a Polarized Light Scattering Spectroscopy measurement (70) having a first probe depth, and a Differential Path Length Spectroscopy measurement (60) having a second probe depth, wherein the second probe depth is set larger than' the first probe depth. By comparing the results of the Polarized Light Scattering Spectroscopy and Differential Path Length Spectroscopy measurements early stages of cancer, such as dysplasia may be detected. Also hyperplasia, carcinoma in situ, and carcinoma may be detected. A computer-readable medium, method and use are also provided.
Abstract:
A measurement system for monitoring an LED chip surface roughening process is described. A reflective illuminator can run reflectance measurements. A vertical positioning means can adjust a distance between an objective lens and an industrial sample. A horizontal positioning means can move objects in XY plane, and is specifically configured to hold the industrial sample and a reference sample. An optical sensor can acquire images of the industrial sample. A spectrometer can acquire reflectance spectrums of the industrial sample and the reference sample. A processor can control these components. The processor can perform deskew, and calculate an average reflectance and an oscillation amplitude from the reflectance spectrums of the industrial sample.
Abstract:
A target substance-detecting apparatus for detecting a target substance in an analyte comprises a detecting device having a substrate and metal structures capable of causing a plasmon resonance arranged thereon, an illumination optical system for illuminating an incident light containing a polarization component polarized in a first direction onto the detecting device to cross the arranged metal structures, a light-receiving device for receiving light containing the polarization component polarized in the first direction and transmitted through or reflected by the detecting device, and an arithmetic unit for calculating on signals from the light-receiving device to analyze a characteristic of the analyte; the metal structures arranged at first intervals not more than 1/10 of a plasmon resonance wavelength in lines in the first direction and at second intervals not less than ¼ of the plasmon resonance wavelength and not more than the wavelength in lines parallel in a second direction.
Abstract:
A highly efficient vacuum ultraviolet circular dichroism spectrometer is provided; the spectrometer suitable for laboratory use or for integration into a beam line at a synchrotron radiation facility. In one embodiment, a spectroscopic circular dichroism instrument is provided; the instrument configured so as to enable circular dichroism data to be simultaneously obtained for multiple wavelengths of light. The instrument may be further configured to operate in at least a portion of the vacuum ultraviolet wavelength region.
Abstract:
The present invention provides a small spectroscope that has a short response time. A spectroscope according to one embodiment of the present invention includes: a beam deflector that includes an electro-optic crystal, having an electro-optic effect, and paired electrodes used to apply an electric field inside the electro-optic crystal; spectroscopic means for dispersing light output by the beam deflector; and wavelength selection means for selecting light having an arbitrary wavelength from the light dispersed and output by the spectroscopic means.
Abstract:
A chemical and biological sensor system (200) includes at least one micro-cantilever sensing element (202) and a mechanism for collecting aerosol, liquid, and solid particles, and depositing the particles as a film layer (146) on a stack (140) formed with the cantilever. The deposited particles include chemical or biological species to be analyzed. A polarized light (242) illuminates the stack (140) at a grazing incidence angle to a specific wavelength of light. The light is polarized in a plane parallel to the stack (140). The polarized light (242) heats the cantilever with different wavelengths of the light spectrum. Readout electronics detect movement of the cantilever (202) as a result of heat transfer from the light and provide spectral data signals corresponding to the detected movement. A spectral analyzer (840) analyzes the spectral data signals, compares spectral images of the materials present to spectral images of known materials, and identifies one or more chemical or biological species present.
Abstract:
A light focusing unit and a spectrum measuring apparatus having the same are provided. The light focusing unit includes a light source section configured to emit light, a light guiding section configured to guide the light emitted from the light source section along multiple parallel light incidence paths, and a light focusing section configured to direct the light from the guiding section to be incident on a test position of a sample at different incidence angles.