Abstract:
A system comprises a modulator circuit, a test signal generator circuit, and a control circuit. The modulator circuit is operable to generate a data-carrying signal based on a reference signal. The test signal generator circuit is operable to generate a test signal based on the reference signal. The control circuit is operable to determine current status of a microwave backhaul link. The control circuit is operable to configure a nominal frequency at which the test signal generator circuit generates the test signal based on the determined status of the microwave backhaul link. The control circuit is operable to determine an amount of whitespace to have on either side of the test signal based on the current status of the microwave backhaul link. The control circuit is operable to configure the modulator circuit such that the data-carrying signal has the determined amount of whitespace surrounding the nominal frequency of the test signal.
Abstract:
A communication receiver which applies signal processing for quantitatively estimating receive signal factors such as communication channel quality, signal characteristics, and overall system received bit error rate (BER) or packet error rate (PER) and which applies a general algorithm for mapping these estimated factors to control receiver performance and minimize power consumption.
Abstract:
Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband path (WB) and a narrowband path (NB). A video channel and a network channel may be received in the WB when the device is operating in a first stage. A video channel and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and NB may enable a continuous reception of the network channel in a transition between the first and third stages. The WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel.
Abstract:
A network device may comprise a first connector for connecting to an external network in which upstream data over cable service interface specification (DOCSIS) signals are communicated using a first frequency band and downstream cable and/or DOCSIS signals are communicated using a second frequency band. The device may also comprise a second connector for connecting to an on-premises network, as well as circuitry residing in a signal path between the first connector and the second connector. The circuitry may be operable to permit the downstream cable and/or DOCSIS signals to pass from the first connector to the second connector, and to block the upstream DOCSIS signals from passing from the first connector to the second connector. The circuitry may be operable to transmit, via the second connector, non-DOCSIS signals into the on-premises network using the first frequency band.
Abstract:
A coupling device for use in a hybrid fiber coaxial (HFC) network may be configured to disable an upstream path through it when there is only noise incident on the upstream path, and enable the upstream path through it when a desired transmission from a cable modem downstream of the coupling device is incident on the upstream path. The coupling device may be a trunk amplifier, a distribution amplifier, a splitter, or the like. The coupling device may comprise a single upstream interface coupled to a plurality of downstream interfaces. The enabling and/or disabling may be in response to a signal strength indicated by the SSI being below a threshold and/or in response to one or more control messages indicating whether any downstream cable modem is, or will be, transmitting.
Abstract:
A first Multimedia over Coax Alliance (MoCA) compatible device comprises a physical layer profiling circuit and a spectrum abstraction circuit. The physical layer profiling circuit may for example be operable to measure a performance metric for each of a plurality of subbands on a shared coaxial cable of a MoCA network. The spectrum abstraction circuit may for example be operable to select, based at least in part on the measured performance metric, a subset of the subbands to be used for communication over the coaxial cable between the first MoCA-compatible device and a second MoCA-compatible device. The spectrum abstraction circuit may for example be operable to receive an indication of whether channel bonding is to be used for the communication over the coaxial cable between the first MoCA-compatible device and the second MoCA-compatible device. The spectrum abstraction circuit may for example be operable to perform the selection of the subset of the subbands based at least in part on the indication of whether channel-bonding is to be used.
Abstract:
Aspects of a method and system for data converters having a transfer function with multiple operating zones. In some embodiments, an operating zone of the multiple operating zones is characterized by more stringent performance criteria than the other operating zones. Thus, such data converters may receive an input signal and generate an output signal from the input signal per the transfer function and the more stringent performance criteria in the appropriate operating zone.
Abstract:
A transmitter comprises a first peak-to-average-power ratio (PAPR) suppression circuit and a second peak-to-average-power ratio (PAPR) suppression circuit. The first PAPR suppression circuit may receive a first sequence of time-domain symbols to be transmitted, alter the first sequence based on each of a plurality of symbol ordering and/or inversion descriptors to generate a corresponding plurality of second sequences of time-domain symbols, measure a PAPR corresponding to each of the second sequences, select one of the plurality of symbol ordering and/or inversion descriptors based on the measurement of PAPR, and convey the selected one of the symbol ordering and/or inversion descriptors to the second PAPR suppression circuit. The second PAPR suppression circuit may receive the first sequence of time-domain symbols to be transmitted, and alter the first sequence based on the selected one of the symbol ordering and/or inversion descriptors to generate a reordered and/or inverted symbol sequence.
Abstract:
A method and system for duty-cycled high speed clock and data recovery with forward error correction are provided. The system operates on a first digital signal comprising a first plurality of samples and a second digital signal comprising a second plurality of samples. The second plurality of samples may be a subset of the first plurality of samples, for example, if the first and second pluralities of samples are generated by one analog-to-digital converter. A clock and data recovery module is operable to produce a timing indication according the second digital signal. The second plurality of samples is sampled intermittently. The discontinuity between bursts of samples in the second signal corresponds to a duty cycle. A forward error correction module is operable to produce a digital error-corrected signal according to the first digital signal and the timing indication.
Abstract:
Methods and systems for hybrid radio frequency digital beamforming may include, in an electronic device comprising an antenna array including antennas arranged along first and second directions, beamforming signals in an analog domain along the first direction of the antenna array and beamforming signals in a digital domain along the second direction of the antenna array. The antenna array may include subsets of antennas, where each subset has a system-on-chip (SOC) with analog and digital beamforming circuitry. Signals may be beamformed in the analog domain by amplifying signals received by the antenna array using a configurable gain and shifting the phase of at least one of the amplified signals. The phase-shifted signals may be summed and converted to a digital signal. A frequency-dependent coefficient may be applied to the digital signal. The antenna array may have a fewer number of antennas along the first direction as compared to a number of antennas along the second direction.