Abstract:
The invention relates to a tubular reactor for carrying out catalytic gas-phase reactions, containing a catalyst tube bundle (8) that is traversed by the relevant reaction gas mixture, is filled with a catalyst, extends between two tube sheets (4, 148) and around which flows a heat transfer medium contained within a surrounding reactor jacket (6). The reactor also comprises gas entry and discharge hoods (2; 60) that cover the two tube sheets for supplying the relevant process gas to the catalyst tubes and for discharging the reacted process gas from the catalyst tubes. Together with all the parts that come into contact with the process gas mixture, the reactor is designed to have an appropriate strength for withstanding the deflagration and explosive pressures that are to be taken into account during its operation. The volume available to the process gas mixture prior to its entry into the catalyst tubes is restricted as much as possible in construction and flow engineering terms.
Abstract:
A nozzle for spraying liquid substances, dispersions, emulsions or suspensions into a fluidized granulator system is provided. The invention provides a generic nozzle, especially for use in the food industry and chemical industry which has good accessibility while being easy to disassemble and assemble without great effort for a required cleaning process. The inner tube (3) of the nozzle is mounted inside a receiving block (11) that is detachably fastened to a tube (10) which is disposed in a fixed manner in a bottom area of a base lance member (9) and can be removed therefrom along with the inner tube (3) and any add-on pieces possibly joined to the inner tube. A fastening device (8) detachably connects the nozzle to the process housing (15) of the fluidized bed granulator system and is arranged in the bottom area of the outer tube (2) of the nozzle.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
The invention relates to a method for carrying out chemical and physical methods, in particular for producing organic pigments or the preparations based thereon. The inventive method consists in injecting at least two liquids or suspensions in a vertex chamber, without using carrying gas, with the aid of two end pipes which are not coaxially oriented. Said injection is carried out at a pressure ranging from 1 to 1000 bars and in conformity with a volume flow rate ranging from 5 to 500 l/h, thereby producing the vertex mixing of a liquid phase with a material modification, and continuously extracting said liquid phase from the vertex chamber through a removing hole, the material modification being obtained
Abstract:
A protective shield for protecting a feed nozzle encloses, not only the circumference of the feed nozzle, but also encloses and protects the end of the feed nozzle. The protective shield includes an open portion in its end which corresponds to, and surrounds the slit in the end of the feed nozzle. Optimal shape of the open portion is determined by spray visualization tests.
Abstract:
A process and apparatus for atomizing a fluid is disclosed herein. The fluid is mixed with an atomizing fluid in a plurality of locations and passed through a nozzle.
Abstract:
The present invention includes a process for preparing an improved catalyst having the steps of admixing compounds containing the components of the catalyst and at least one solvent to form a precursor; extracting the precursor with a supercritical stream to form a processed precursor, where the extracting step includes drying the precursor, atomizing the precursor, and combinations thereof; and calcining the processed precursor to form a catalyst. The process may include drying the precursor by introducing the precursor, which has been previously washed with an alcohol, such as ethanol or methanol, into a vessel and introducing the supercritical stream at a pressure and temperature above the critical point of the stream into the vessel. The process may include drying and atomizing the precursor by introducing the supercritical solvent into the vessel at a pressure and a temperature above critical point of the solvent and introducing the precursor into the extraction vessel through a nozzle. The process may also include drying and atomizing the precursor by introducing the precursor and the supercritical solvent into the vessel through a nozzle.
Abstract:
A continuous process for preparing lithium complex greases improved by using a complexing agent of dimethyl glutarate, dimethyl adipate, glutaric acid, adipic acid, or mixtures thereof, and preferably also a specialized flash chamber to achieve a penetration split (60X-UW) of within −20 mm/10 to 10 mm/10, a roll stability (D1831) of 240° C.
Abstract:
The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
Abstract:
A coaxial injection device for injecting and dispersing reagents into a reactor, including an exterior duct for high-velocity gas injection; an outer-middle injector with at least one nozzle for liquid injection; an inner-middle duct for low-velocity gas injection; and an interior injector with nozzle for liquid injection; wherein, the exterior duct is formed by the internal wall of an insert and the external wall of the outer-middle injector; and is located externally to and circumferentially surrounds all other injectors and ducts; the outer-middle injector is formed by two concentric cylinders with end plate and injector nozzles; the inner-middle duct is formed by interior wall of the outer-middle injector and the exterior wall of the interior injector; the interior injector is formed by a cylinder with an endplate, the endplate having a nozzle; thereby ensuring the mixing and dispersion of the liquids and gases into the reactor to increase reaction homogeneity, reaction efficiency, reactor efficiency and reduced byproduct formation. A multiple coaxial injection device system and a method for operating the system are also described.