Abstract:
A rotor-based remote flying vehicle platform includes a vehicle body. The vehicle body includes a processing unit that receives positional sensor data and provides flight controls based upon the received positional sensor data. The vehicle body also includes a first frame connection interface that is configured to interface with a plurality of different arm types. The first frame connection interface comprises a physical connection and an electronic connection. Additionally, the rotor-based remote flying vehicle platform includes a first arm, of a rotor-based remote flying vehicle platform, that is selectively connectable to the vehicle body through the first frame connection interface. The first arm comprises a first arm connection interface that is selectively connectable to the first frame connection interface. Additionally, the first arm comprises a first motor mounted to the first arm.
Abstract:
Methods, systems, and process-readable media include an autonomous vehicle override control system that receives override commands from a pilot qualified on a first type of unmanned autonomous vehicle (UAV) and translates the inputs into suitable commands transmitted to a target UAV of a second UAV type. A pilot's certification for a first UAV type may be determined from the pilot's login credentials. The system may obtain a first control model for the first UAV type and a second control model for the target UAV. Pilot input commands processed through the first control model may be used to calculate movements of a virtual UAV of the type. The system may estimate physical movement of the target UAV similar to the first physical movement, and generate an override command for the target UAV using the second control model and the second physical movement. Control models may accommodate current conditions and pilot experience.
Abstract:
Embodiments are directed towards hybrid power supply that provides electric power to a multirotor rotorcraft to extend range or flying time. In one embodiment, an internal combustion engine and fuel tank are provided that interoperate with a battery provided by a commercial multirotor rotorcraft to substantially extend flying time or flying distance.
Abstract:
In one embodiment, a controller instructs an unmanned aerial vehicle (UAV) docked to a landing perch to perform a pre-flight test operation of a pre-flight test routine. The controller receives sensor data associated with the pre-flight test operation from one or more force sensors of the landing perch, in response to the UAV performing the pre-flight test operation. The controller determines whether the sensor data associated with the pre-flight test operation is within an acceptable range. The controller causes the UAV to launch from the landing perch based in part on a determination that UAV has passed the pre-flight test routine.
Abstract:
The disclosed subject matter relates to methods and apparatus facilitating assessments of structural and electronic features, parameters, characteristics or any combination thereof using one or more unmanned autonomous vehicles. In some embodiments, an unmanned vehicle may be configured to monitor one or both of the structural and electrical characteristics of an object, and can also include cooperative behavior between two or more unmanned vehicles to test electrical communication in a directional fashion.
Abstract:
In an approach to providing navigation assistance, one or more computer processors receive a request for navigation assistance to a destination from a first user. The one or more computer processors dispatch a navigation assistance UAV to the first user. The one or more computer processors determine a route for the first user to follow to the destination. The one or more computer processors provide navigation assistance for the route to the first user using the navigation assistance UAV.
Abstract:
An intelligence, surveillance, and reconnaissance system is disclosed including a ground station and one or more aerial vehicles. The aerial vehicles are autonomous systems capable of communicating intelligence data to the ground station and be used as part of a missile delivery package. A plurality of aerial vehicles can be configured to cast a wide net of reconnaissance over a large area on the ground including smaller overlapping reconnaissance areas provided by each of the plurality of the aerial vehicles.
Abstract:
Systems and methods are described for an automatically deployed wireless network. According to one embodiment, an access point controller (AC) determines the existence of a network anomaly at a position of a wireless network that is managed by the AC. Responsive thereto, the AC causes an unmanned vehicle that carries a movable access point (AP) to carry the movable AP to the position or proximate thereto and causes the movable AP to provide wireless network service to an area encompassing the position by sending a dispatch command to the unmanned vehicle. The dispatch command instructs the unmanned vehicle to move to the position or proximate thereto.
Abstract:
Disclosed is a method for delivering a load on-board an aircraft to a target. The method comprises: acquiring a position of the target; acquiring parameter values relating to aircraft manoeuvrability; acquiring load properties; acquiring parameter values relating to environmental conditions; using the acquired information, determining a position and a velocity value; performing, by the aircraft, the procedure; and, at a point in the procedure that the aircraft has the determined position and its travelling at a velocity equal to the determined velocity value, releasing the load. The determined position and velocity value are such that, were the aircraft to release the load whilst having the determined position and velocity, the load would travel to be within a predetermined distance of the target. The procedure is such that the aircraft would have the determined position and velocity at some time-step.
Abstract:
A system and method for management of airspace for unmanned aircraft is disclosed. The system and method comprises administration of the airspace including designation of flyways and zones with reference to features in the region. The system and method comprises administration of aircraft including registration of aircraft and mission. A monitoring system tracks conditions and aircraft traffic in the airspace. Aircraft may be configured to transact with the management system including to obtain rights/priority by license and to operate in the airspace under direction of the system. The system and aircraft may be configured for dynamic transactions (e.g. licensing/routing). The system will set rates for licenses and use/access to the airspace and aircraft will be billed/pay for use/access of the airspace at rates using data from data sources.