Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
Natural and/or synthetic antibodies for specific proteins are adhered to nanoparticles. The nanoparticles are adhered to a substrate and the substrate is exposed to a sample that may contain the specific proteins. The substrates are then tested with surface enhanced Raman scattering techniques and/or localized surface plasmon resonance techniques to quantify the amount of the specific protein in the sample.
Abstract:
A fluid handling module is configured for removable engagement with a reusable main fluid handling instrument. The module includes a module housing and a first fluid passageway extending from the module housing. The first fluid passageway has a patient end remote from the housing. The first fluid passageway is configured to provide fluid communication with a bodily fluid in a patient. A fluid component separator is in fluid communication with the first fluid passageway. The fluid component separator is configured to separate at least one component from a portion of the bodily fluid drawn from the patient. A spectroscopic sample cell is configured to hold at least a portion of the first component.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
Systems and methods for analysis of samples, and in certain embodiments, microfluidic sample analyzers configured to receive a cassette containing a sample therein to perform an analysis of the sample are described. The microfluidic sample analyzers may be used to control fluid flow, mixing, and sample analysis in a variety of microfluidic systems such as microfluidic point-of-care diagnostic platforms. Advantageously, the microfluidic sample analyzers may be, in some embodiments, inexpensive, reduced in size compared to conventional bench top systems, and simple to use. Cassettes that can operate with the sample analyzers are also described.
Abstract:
Systems and methods for controlling fluids in microfluidic systems are generally described. In some embodiments, control of fluids involves the use of feedback from one or more processes or events taking place in the microfluidic system. For instance, a detector may detect one or more fluids at a measurement zone of a microfluidic system and one or more signals, or a pattern of signals, may be generated corresponding to the fluid(s). In some cases, the signal or pattern of signals may correspond to an intensity, a duration, a position in time relative to a second position in time or relative to another process, and/or an average time period between events. Using this data, a control system may determine whether to modulate subsequent fluid flow in the microfluidic system. In some embodiments, these and other methods can be used to conduct quality control to determine abnormalities in operation of the microfluidic system.
Abstract:
An apparatus and method of quantitatively obtaining a measurement of pollen of a plant. One method of counting comprises imaging the sample with the pollen well-distributed in the focal plane of the imager. Image evaluation software can identify and count objects in the image that are consistent with pollen. Total pollen count for the plant can be derived from the count of pollen of the sample, proportionality of the sample volume to the starting volume, and proportionality of area of sample imaged to total area of sample. Pollen quantification can be used for research or commercial production decisions relative to the plant or its seed.
Abstract:
A fluid handling module that is removably engageable with a bodily fluid analyzer is provided. The module may comprise a fluid handling element, and a fluid component separator that is accessible via the fluid handling element and configured to separate at least one component of a bodily fluid transported to the fluid component separator. The fluid handling element may have at least one control element interface.
Abstract:
Optical systems, and corresponding methods, for multiple reactions are provided. The optical systems are in a fixed position relative to a thermal assembly and include at least one array of excitation sources (e.g., light emitting diodes (LEDs)) configured to output excitation energy along an excitation optical path. In addition, a detector configured to receive emission energy along a detection optical path in the same plane as the excitation optical path is also provided.