Abstract:
A multilayer three-dimensional circuit structure and a manufacturing method thereof are provided in the present invention. The manufacturing method includes following steps. First, a three-dimensional insulating structure is provided. A first three-dimensional circuit structure is then formed on a surface of the three-dimensional insulating structure. Next, an insulating layer covering the first three-dimensional circuit structure is formed. Thereafter, a second three-dimensional circuit structure is formed on the insulating layer. Subsequently, at least a conductive via penetrating the insulating layer is formed for electrically connecting the second three-dimensional circuit structure and the first three-dimensional circuit structure.
Abstract:
High dielectric constant thermoplastic compositions that are capable of being used in a laser direct structuring process. The compositions include a thermoplastic base resin, a laser direct structuring additive, and at least one ceramic filler. The compositions provide a high dielectric constant, low loss tangent thermoplastic composition. The compositions can be used in a variety of applications such as personal computers, notebook and portable computers, cell phone antennas and other such communications equipment, medical applications, RFID applications, and automotive applications.
Abstract:
A disclosed substrate is composed of a base member having a through-hole, a penetrating via provided in the through-hole, and a wiring connected to the penetrating via. The penetrating via includes a penetrating part having two ends on both sides of the base member, which is provided in the through-hole, a first protrusion protruding from the base member, which is formed on a first end of the penetrating part so as to be connected to the wiring, and a second protrusion protruding from the base member, which is formed on a second end of the penetrating part. The first protrusion and second protrusion are wider than a diameter of the through-hole.
Abstract:
Laminates for electronic components are produced by applying a polyimide resin precursor solution containing a palladium compound on a polyimide substrate, drying the resulting coating to form a polyimide resin precursor layer, irradiating this layer with ultraviolet rays in the presence of a hydrogen donor to form nuclei for primer plating, forming a metal primer layer by electroless plating, and converting the polyimide resin precursor layer into a polyimide resin layer through imidation by heating either after or before the formation of a surface plating layer. The invention provides laminates for electronic components which are extremely improved in adhesion to metal layers without impairing the characteristics inherent in the substrate and are excellent in insulating properties, and polyimide resin precursor resin solution to be used in the production of the laminates.
Abstract:
The present invention provides methods and systems for fabricating electronic and/or microfluidic structures on elastomeric substrates. In one method, a protective structure is positioned onto a portion of a surface of the hydrophobic substrate. An unprotected portion of the surface is activated to become hydrophilic, wherein the protected portion of the surface of the substrate remains hydrophobic. The protective structure is removed from the surface of the substrate and material is deposited on the hydrophobic portion to form a structure on the substrate.
Abstract:
An insulating layer (5) and a conductive seed layer (6) are applied to a substrate (1) in a simple process. A photo resist with palladium chloride are provided in a bath for electrophoretic deposition onto the substrate. The photo resist is an insulator and the palladium chloride is a catalyst. The layer is heated with UV to cure it. The layer is plasma etched to expose more of the palladium chloride, which acts as a catalyst for electrodes plating of the conductive seed layer. A thicker conductive layer (7) is then electroplated onto the seed layer. These steps may be repeated for successive insulating and/or conductive layers.
Abstract:
A process for the deposition of a metal on surfaces of a shaped plastic body. A catalyst for metal deposition is incorporated into a shaped body. After removing material from a surface of the body and activating the catalyst with an acid, metal is deposited on the surface by an electroless metal deposition process.
Abstract:
Dielectric structures particularly suitable for use in capacitors and having a textured surface are provided, together with methods of forming these structures. Such dielectric structures show increased adhesion of subsequently applied conductive layers.
Abstract:
The invention provides an electronic part comprising an electronic-part body comprising: composite-material body made of synthetic resin in which ceramic powder as a functional material and a catalytic agent to make plating practicable are dispersed; and a layer of composite material of synthetic resin in which ceramic powder as a functional material is dispersed, said layer covering the external surface of said composite-material body except the portion in which an electrode is to be disposed; and an electrode disposed on the external surface of said electronic-part body. The above described electronic part is excellent in the freedom of shape, high in dimensional accuracy, and it is easy to realize the intended electrical characteristics.
Abstract:
A composite material and a method for making same are disclosed. A composite article including an electrically and/or thermally insulating substrate and protective layers on each side thereof is particularly disclosed. Said material includes protective layers consisting of fibers of a heat-stable material flocked onto the insulating substrate, and heat-stable coating resin. The resulting protective layer has improved protective properties, particularly moisture-proofness. The composite material may also be used as a metal layer carrier for forming flexible printed electrical circuits.