Abstract:
The invention provides a method and device for building one or more passive components into a chip scale package. The method includes the steps of selecting a passive component having a terminal pitch that is a multiple of the package ball pitch of a chip scale package and mounting the selected passive component terminals to ball sites of the package. A preferred embodiment of the invention uses a single metal layer polyamide tape as the substrate of the package. Additional preferred embodiments of the invention are disclosed in which the terminal pitch multiple of the package ball pitch is one or two. Devices corresponding to the disclosed methods are also disclosed.
Abstract:
To provide an interlayer-connected, multi-layer flexible printed circuit board having high bonding reliability and most suitable for micropatterning the circuit layers in the device; and to provide a high-productivity method for fabricating the device.A multi-layer flexible printed circuit board, wherein a conductor is filled in the through-holes formed in the insulating layer in the direction of the thickness thereof so as to electrically interconnect the circuit layers formed on both faces of the insulating layer, and wherein the conductor contains inside it, a copper-core solder ball having a copper ball as a core thereof.
Abstract:
Microelectronic devices, methods for packaging microelectronic devices, and methods for forming interconnects in microelectronic devices are disclosed herein. In one embodiment, a method comprises providing a microelectronic substrate having a front side and a backside. The substrate has a microelectronic die including an integrated circuit and a terminal operatively coupled to the integrated circuit. The method also includes forming a passage at least partially through the substrate and having an opening at the front side and/or backside of the substrate. The method further includes sealing the opening with a conductive cap that closes one end of the passage while another end of the passage remains open. The method then includes filling the passage with a conductive material.
Abstract:
A system, method, and apparatus of providing conductive bonding material into a plurality of cavities in a circuit supporting substrate is disclosed. The method comprises placing a fill head in substantial contact with a circuit supporting substrate. The circuit supporting substrate includes at least one cavity. A linear motion or a rotational motion is provided to at least one of the circuit supporting substrate and the fill head while the fill head is in substantial contact with the circuit supporting substrate. Conductive bonding material is forced out of the fill head toward the circuit supporting substrate. The conductive bonding material is provided into the at least one cavity contemporaneous with the at least one cavity being in proximity to the fill head.
Abstract:
A laminated IC packaging substrate includes an intermediate connecting layer having a plurality of through holes. Each of the through holes is filled with solder material protruding from a top surface and/or a bottom surface of the intermediate connecting layer. A first circuit board having thereon a first wiring pattern is adhered to the top surface of the intermediate connecting layer using a first adhesive layer. A second circuit board having thereon a second wiring pattern is adhered to the bottom surface of the intermediate connecting layer using a second adhesive layer.
Abstract:
Microelectronic devices, methods for packaging microelectronic devices, and methods for forming interconnects in microelectronic devices are disclosed herein. In one embodiment, a method comprises providing a microelectronic substrate having a front side and a backside. The substrate has a microelectronic die including an integrated circuit and a terminal operatively coupled to the integrated circuit. The method also includes forming a passage at least partially through the substrate and having an opening at the front side and/or backside of the substrate. The method further includes sealing the opening with a conductive cap that closes one end of the passage while another end of the passage remains open. The method then includes filling the passage with a conductive material.
Abstract:
In order to inhibit the connection failure due to the degradation of the connection interface strength of the electrode pad and the warp thereof in the semiconductor device having an electrode pad, a metal layer formed on the electrode pad, and a metal bump formed on the metal layer, in the present invention, gold (Au) is contained in the metal layer, the metal bump is made of solder mainly made of Sn and designed to have an average height H of 100 μm or less per unit area in the electrode pad, and the concentration of Au of the metal layer dissolved in the solder is set to 1.3×10−3 (Vol %) or less. More preferably, the metal bump contains palladium (Pd), and the solder coating for forming the metal bump on the electrode pad is performed by using the dipping and the paste printing in combination.
Abstract:
An electrical assembly (200, FIG. 2) is formed from two, interconnected circuit boards (202, 204). Conductive spacers (240) and a conductive material (260) are placed between complementary bond pads (218, 232) on the circuit boards. The conductive spacers are formed from a material that maintains its mechanical integrity during the process of attaching the circuit boards. The conductive material is a solder or conductive adhesive used to mechanically attach the circuit boards. In addition, an insulating material (270) is inserted into an interface region (250) between the circuit boards. The insulating material provides additional mechanical connection between the circuit boards. In one embodiment, one circuit board (202) includes a glass panel that holds an array of organic light emitting diodes (OLEDs), and the other circuit board (204) is a ceramic circuit board. Together, the interconnected circuit board assembly (200) forms a portion of a flat panel display (1102, FIG. 11).
Abstract:
Conductive paste containing tin particles and silver particles is packed in a substantially cylindrical via hole formed in a thermoplastic resin film that interposes between conductor patterns and is hot-pressed from both sides. When the metal particles contained in the conductive paste are sintered to form a unified conductive compound, the volume of the conductive paste shrinks. Synchronously, the resin film around the via-hole protrudes into the via-hole. Therefore, the shape of the side wall on the cross-section of the conductive compound provides an arch shape, and a side wall adjacent to a junction part of the conductive compound, which contacts the conductor pattern, is formed with an inclination. Therefore, it is possible to prevent the stress concentration due to deformation of the board.
Abstract:
A system and method for reflowing solder to interconnect a plurality of electronic components (24) to a substrate (12) is disclosed. The system includes an oven for preheating the substrate (12) and the plurality of electronic components (24) disposed thereon, a supplemental heat source disposed in the oven for providing additional heat energy to reflow the solder (72), a pallet (14 ) for supporting the substrate (12), wherein the pallet (14) has at least one internal cavity (40), and a phase-transition material (42) disposed within the cavity (40) for absorbing heat from the pallet (14).