Abstract:
The present disclosure describes devices and methods for providing movement of a payload about at least two degrees of freedom. A gimbal mechanism as described herein can provide rotation of a payload about at least two different axes, wherein the rotation about the two axes is controlled by two actuators that can be actuated independently of one another. The two actuators can be fixed in position and orientation relative to one another, such that neither actuator is driven by the other. Therefore, the gimbal mechanism can control movement of the payload about two degrees of freedom in a parallel manner. The gimbal mechanisms described herein can have a compact configuration that allows for minimizing the volume and weight of the gimbal mechanisms, while improving the stability of movement provided by the gimbal mechanisms.
Abstract:
A system for detecting a particular occupancy status of multiple parking positions of a parking facility, which includes a parking occupancy sensor for detecting an occupancy status of a parking position, a displacement device for displacing the parking occupancy sensor along the parking positions, so that, due to a displacement of the parking occupancy sensor along the parking positions, the parking occupancy sensor is able to detect the particular occupancy status of the parking positions. A corresponding method, a corresponding parking facility for vehicles and a computer program are also described.
Abstract:
A forklift operation assist system includes a forklift truck having a load-handling device with a lifting portion, a small unmanned aerial vehicle that is mountable on the forklift truck and has an image capture device, and a display device that presents images captured by the image capture device. The forklift truck includes a vehicle controller that is electrically connected to the display device. The small unmanned aerial vehicle includes an aircraft controller that communicates with the vehicle controller. The small unmanned aerial vehicle takes off the forklift truck when a lifting operation of the lifting portion is detected. The display device presents the images captured by the image capture device while the aerial vehicle is flying.
Abstract:
The present invention provides novel inflatable and rigidizable support elements, and methods of manufacture and use thereof. In particular, the present invention provides inflatable and rigidizable support elements rapidly inflated and rigidized using an acrylic adhesive and UV light generated by combustion, which find use, for example, in rapidly deploying and supporting the wing of an aerial vehicle and wind turbine towers.
Abstract:
An unmanned vehicle includes a vehicle body having an accommodating space, an arm assembly coupled to the vehicle body, and a floating member connected to a bottom surface of the vehicle body. The arm assembly includes a first rotating member, a second rotating member coupled to the first rotating member, and a propeller. The propeller includes a rotatable axle coupled to the second rotating member and extending along a rotating axis. The second rotating member can turn the propeller by rotating the rotatable axle about the rotating axis. The first rotating member can rotate and effect a movement of the second rotating member so as to selectively adjust the rotatable axle to align the rotating axis with a first axial direction and a second axial direction. The arm assembly can rotate relative to the vehicle body to selectively rotate into or out of the accommodating space.
Abstract:
A capturing hook for engaging a cable during capture and release of an aerial vehicle may comprise a first and second gate pivotally supported at their first ends by a base portion and each being movable between a closed position and an open position, but spring-biased to the closed position. The capturing hook may further include a latch device comprising a movable locking part biased by a return spring to a locked position to lock the second gate in the closed position.
Abstract:
Disclosed is an aerial vehicle. The aerial vehicle may include a removable battery. Various embodiments of removable battery assemblies include a pull-bar battery assembly, a latch battery assembly, and a lever battery assembly. The aerial vehicle may also include a propeller locking mechanism to which propellers may be removably coupled. The propeller locking mechanism may obviate the need for tools for coupling or decoupling propellers to the aerial vehicle. Vents in the arm of the aerial vehicle may provide an air pathway, providing convective cooling for the electronics aerial vehicle.
Abstract:
A method for locating external surface impacts on a body. The steps are: modeling the body in a control unit first database to obtain a virtual body model in a virtual system of reference axes; modeling, in a second database, a plurality of clouds of points in the virtual system, each cloud defining an inspection zone representing an external surface portion; selecting an inspection zone; transfering the coordinates of each point of the first and second databases to a geographic system of reference axes; determining geographic coordinates of an initial position of a range finder equipped flying drone communicating with the processing unit; calculating a drone flight plan to scan the selected inspection zone; creating a 3D meshing of the scanned inspection zone; detecting the impacts by comparing the 3D meshing and the virtual aircraft model and calculating the coordinates of each impact in the geographic and virtual systems.
Abstract:
A camera drone with a function of providing real-time captured images in a certain angle (e.g., vertical to the horizon) is disclosed. The camera drone includes multiple rotor wings, a support structure, a wireless transmitter, a controller, and a camera device. The camera device includes a processor, a gravity sensor, a gyroscope, and an image module. The image module is configured to capture an original image in a real time manner. The gravity sensor and the gyroscope are used to calculate a current dip angle (i.e., inclination of a geological plane down from the horizon) of the camera drone. The current dip angle is used to calculate an angle of rotation. The camera device then generates an edited image based on the original image and the angle of rotation.
Abstract:
A personal drone with much extended air time. A portable retractable-extendable clawed drone with automated perching function. Perching, landing on a target horizontal edge or a wire, a building trim, a lamp or sign, a shelf, almost any small horizontal edge with a little surface, for video streaming without using up power on hovering or flight, thus conserving power indefinitely. A veritable fly-on-the-wall multi-rotor drone having mechanical claws and automated perching function.