Abstract:
The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
Abstract:
To provide a light source which realizes accurate determination of the particle density of a plasma atmosphere without disturbing the state of the plasma atmosphere.The light source of the invention includes a tubular casing 12; a cooling medium passage 30 for causing a cooling medium to flow therethrough, the passage being provided along the inner wall of the casing; a lens 50 provided at a tip end of the casing; a first electrode 44 and a second electrode 45 which are provided in the casing and before the lens so as to be vertical to the axis of the casing and parallel to each other; and an insulating spacer 46 provided between the first electrode and the second electrode. The light source further includes a hole 47 axially penetrating the center portions of the first electrode, the insulating spacer, and the second electrode; and an electric discharge gas passage for introducing an electric discharge gas, along the inner wall of the cooling medium passage, to the back surface of the lens so that the electric discharge gas is reflected by the lens and flows through the hole.
Abstract:
An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
Abstract:
An illuminating device is provided that includes, but is not limited to a cylindrical lighting unit with a cylindrical slit diaphragm arranged in the interior thereof. The lighting unit includes, but is not limited to a cylindrical light source with a cylindrical diffusor arranged therein, and the slit diaphragm has a cylinder with axially extending slits that are arranged in such a way that incident beams coupled in perpendicular to the slit diaphragm axis (O) converge in a point (M) that is spaced apart from the cylinder axis in the interior of the slit diaphragm through the slits.
Abstract:
The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
Abstract:
An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
Abstract:
A system for stabilizing the angle of incidence a beam of electromagnetic radiation from a vertically oriented Arc lamp onto a horizontally oriented sample surface.
Abstract:
The invention relates to optoelectronic systems for detecting one or more target particles. The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, thereby producing a measurable optical signal.
Abstract:
A fluid handling module is configured for removable engagement with a reusable main fluid handling instrument. The module comprises a housing, an infusion fluid passageway, a sample fluid passageway, and a fluid component separator. The infusion fluid passageway has a first port and a second port spaced from the first port, and a lumen extending from the first port to the second port. The sample fluid passageway is connected to the infusion fluid passageway. The fluid component separator is connected to the sample fluid passageway.
Abstract:
An illuminator for the spectroscopic illumination of minerals, gems, etc., in which a substance under examination is illuminated by means of a source of white light, comprises at least one optical fiber (22) for transmitting the illumination light, passed through the substance under examination, to an observation spectroscope (30).